Explainability and understanding for deep learning models

Sanji Fernando

July 12, 2019
Clinical reviews for reimbursement

AI case study

• For many inpatient stays, health care payers require 3rd party, independent physician review of the medical record to support the level of care reimbursement.

• Many admissions do not support a higher level of reimbursement — yet clinicians still end up reviewing these cases.
 – Hundreds of clinicians at Optum review the medical records and notes every day and provide their independent assessment of the level of care that should be supported for reimbursement.

• These skilled clinicians combine clinical guidelines and experience to review medical notes to determine if an inpatient stay is supported.

• The record of their work includes the notes the clinicians reviewed and their expert determination.

We trained an AI solution to automate the review of notes and determine which cases require a clinician review.
Trained deep learning model
Pre-screen medical notes for clinicians

- We trained a deep learning model on over 200K medical notes — and the decisions from clinicians after reviewing these notes.
- The trained model automates the review of all medical notes, and determines which notes should be reviewed by physicians.
- The deep learning model “reads” the medical notes and “learns” from the previous determinations made by physicians.
- We used a variation of a Recurrent Neural Network (RNN), a model architecture that is often used to determine sentiment in unstructured text.
- A score is generated by the deep learning model — and model designers select a threshold over which a chart should be reviewed by a physician.
The black box problem

How can we understand if the model is working correctly?

• Deep learning models turn words/text into numeric vectors.
• These vectors are passed to a series of connected equations.
• They resolve to a numeric score without detail on what the basis was for the score.
• But a model does not specify for clinicians what aspects of the medical notes would support the model’s assessment.
• This leads to key questions as to what is driving the determination made by the model.
Techniques for better understanding
Leveraging an attention function in our model

• We implemented model architecture that helps us better understand what terms are important to the model.

• It creates a set of intermediate scores of the words in the notes, helping us understand what may be drawing the “attention” of the model.

• We created a tool for users to see what terms in the medical notes had higher attention scores.

• Using this tool, clinicians are able to see which terms have generated more “attention” — and confirm these are the aspects of the medical notes they would have keyed on as well.
Visual tools for better understanding

We have translated specific attention weights into a visual interface

- The darker the highlighting, the higher its importance or influence on status score.
- Darker highlights denote how frequently, and in what context, it was used in prior IP recommendations.
- AI reviews words that precede and succeed the target word to understand its context and to assign its weight.
Understanding tradeoffs

We have also developed visual tools for customers to understand the tradeoffs when selecting the threshold used to classify medical notes.

Threshold = 0.75
Accuracy = 0.756
Precision = 0.795
Recall = 0.866

Model score distribution and classification customization
Key takeaways
How to approach explainability and understanding

When possible, express and share how the model operates to key stakeholders.
• Expose training data and the labels (answers) used to train the model.
• Apply techniques like Attention to increase visibility on inputs to the model, and create a dialogue with clinicians on how the model works.
• Understand that the output of a model is a score, and understand the tradeoffs for false positives and false negatives for any prediction/inference.

But we still have more work…
• We need AI model approaches that can answer “why” models scored an input a certain way.
• New breakthroughs in causal models may lead to more interpretable models.
 − Invariances is a very new technique described by Facebook on how to train multiple deep learning networks on different slices of training data and isolate specific features that are central to each model’s inference.
 − Probabilistic programming employs Bayesian methods to combine learning for data with an assertion of priors reflecting expertise (like known clinical knowledge).