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Betty C.

65 years old. History of
myocardial infarction,
status post CABG,
congestive heart failure,
drug dependency

Admitted via Emergency
Department with chest
pain and pulmonary
edema

Discharged and lost to
follow-up



Betty C. is lost in the shuffle
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Duke Connected Care




Duke Connected Care

Medicare Shared Savings Program Track 3
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Exceed ACO shares
40%-75% of losses
based on quality
performance

Benchmark

ACO shares up to
Save 75% of savings

Medicare Shared Savings Program Track 3
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Benchmark I Two-Sided Risk

Being “at risk” requires being able to quantify risk
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Hospitalizations

0%

admission rate 7/17-7/18

i Two-Sided Risk

5%

readmission rate 7/17-7/18
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Can we risk stratify 52K
patients by hospitalization






Can we “see” 52K patients?
Can we predict their trajectories?
Can we change their trajectories?




Effectively managing a precious resource—
Intensive care management

hid




Identification . Stratification

x Health &

Wellness

@
DukeWELL

Care Management
Continuum

Management

Description Description
*Low cost sAverage cost
+No chronic condition *One condition
+Low risk *Medium risk
+Low impactability *Med-Low impactability
Service
Comprehensive health assessment
Condition-specific education ] [ ]
Health coaching o L
Coordination of transitions in care
services utilization education [ ]
Pharmacy & medication support
Resource coordination @

Face-to-face consultation
Shared decision making support
Advanced care planning
S)Imptum managg'nent.

Appaintment coordination

CQuality gap closure

Specialty / disease-specific rounds

Care
Management

Interventions

e Advanced

lliness

Description
+High cost
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CENTERS for MEDICARE & MEDICAID SERVICES
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Predict
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Poisson Deep Factor Network
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https://www.physicianswe



52K x 32 Diagnostic Categories
Month



Historical Data
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Poisson Deep Factor Network

Poisson Deep Factor Network
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HEALTH DATA IN ACTION




change



A pharmacy technician
visits Betty at her home

Helps her understand her
medications
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