Innovation at NCATS

U.S. Patents granted between October 2018 to July 2020 for NCATS Inventions
ABOUT THE NATIONAL CENTER FOR ADVANCING TRANSLATIONAL SCIENCES (NCATS):

NCATS conducts and supports research on the science and operation of translation – the process by which interventions to improve health are developed and implemented – to allow more treatments to get to more patients more quickly. For additional information about NCATS and its programs, visit https://ncats.nih.gov.

ABOUT THE NATIONAL INSTITUTES OF HEALTH (NIH):

NIH, the nation’s medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical and translational medical research and is investigating the causes, treatments and cures for both common and rare diseases. For more information about NIH and its programs, visit https://www.nih.gov.
Innovation at NCATS 2020 EDITION U.S. Patents granted between October 2018 to July 2020 for NCATS Inventions
INTRODUCTION

The National Center for Advancing Translational Sciences (NCATS) at the National Institutes of Health (NIH) innovates to reduce, remove or bypass costly and time-consuming bottlenecks in the translational research pipeline. The Center emphasizes innovation to speed the delivery of new drugs, diagnostics and medical devices to patients.

The NCATS Office of Strategic Alliances (OSA) aims to enable interactions and partnerships between industry and academia and NCATS laboratories and scientists. One of OSA’s core objectives is to facilitate the commercialization of inventions and discoveries made at NCATS for the benefit of the health of the nation and the world.

OSA has created this compilation of U.S. patents issued between October 2018 and July 2020 as a testimony to the many discoveries of NCATS Division of Preclinical Innovation (DPI) scientists. Many of these patents were developed through collaborative relationships with government, industry, academia, and patient and rare diseases communities, and they are consistent with DPI’s mission to develop system approaches that improve the efficiency and effectiveness of the translation process. Granted U.S. patents include new technologies to make preclinical research more predictive and efficient and to de-risk potential drug targets or research projects to make them more attractive for commercial investment.

The tireless efforts of NCATS’ DPI scientists cannot be captured fully in a simple patent listing. However, the breadth and scope of the inventive activity captured in these granted U.S. patents demonstrate outstanding contributions that impact public health.

We congratulate all of our DPI colleagues on their efforts.

The Office of Strategic Alliances, NCATS
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Title</th>
<th>Issue Date</th>
<th>Patent Number</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODULATORS OF THE RELAXIN RECEPTOR 1</td>
<td>November 13, 2018</td>
<td>US 10,125,112</td>
<td>2</td>
</tr>
<tr>
<td>ANTFUNGAL COMPOUND PROCESS</td>
<td>January 8, 2019</td>
<td>US 10,173,998</td>
<td>4</td>
</tr>
<tr>
<td>HETEROCYCLIC COMPOUNDS AND METHODS OF USE THEREOF</td>
<td>February 12, 2019</td>
<td>US 10,202,367</td>
<td>6</td>
</tr>
<tr>
<td>BENZENESULFONAMIDE UPREGULATORS OF NPCL FOR NEIMANN-PICK DISEASE AND OTHER LYSOSOMAL STORAGE DISORDERS</td>
<td>March 26, 2019</td>
<td>US 10,239,830</td>
<td>8</td>
</tr>
<tr>
<td>4-((2-HYDROXY-3-METHOXYBENZYL)AMINO) BENZENESULFONAMIDE DERIVATIVES AS POTENT AND SELECTIVE INHIBITORS OF 12-LIPOXYGENASE</td>
<td>April 23, 2019</td>
<td>US 10,266,488</td>
<td>10</td>
</tr>
<tr>
<td>COMPOUNDS AND METHODS FOR THE PREVENTION AND TREATMENT OF TUMOR METASTASIS AND TUMORIGENESIS</td>
<td>May 28, 2019</td>
<td>US 10,301,314</td>
<td>14</td>
</tr>
<tr>
<td>SMALL MOLECULE INHIBITORS OF LACTATE DEHYDROGENASE AND METHODS OF USE THEREOF</td>
<td>July 16, 2019</td>
<td>US 10,351,532</td>
<td>16</td>
</tr>
<tr>
<td>GALACTOKINASE INHIBITORS FOR THE TREATMENT AND PREVENTION OF ASSOCIATED DISEASES AND DISORDERS</td>
<td>November 12, 2019</td>
<td>US 10,471,061</td>
<td>34</td>
</tr>
<tr>
<td>ANTIFUNGAL COMPOUND PROCESS</td>
<td>August 6, 2019</td>
<td>US 10,392,365</td>
<td>20</td>
</tr>
<tr>
<td>TOCOPHEROL AND TOCOPHERYL QUINONE DERIVATIVES AS CORRECTORS OF LYSOSOMAL STORAGE DISORDERS</td>
<td>August 6, 2019</td>
<td>US 10,392,365</td>
<td>20</td>
</tr>
<tr>
<td>BICYCLIC BET BROMODOMAIN INHIBITORS AND USES THEREOF</td>
<td>December 24, 2019</td>
<td>US 10,513,521</td>
<td>38</td>
</tr>
<tr>
<td>COMPOSITIONS AND METHODS FOR INHIBITING BMP</td>
<td>February 11, 2020</td>
<td>US 10,555,942</td>
<td>40</td>
</tr>
<tr>
<td>4-(2-HYDROXY-3-METHOXYBENZYL)AMINO) BENZENESULFONAMIDE DERIVATIVES AS POTENT AND SELECTIVE INHIBITORS OF 12-LIPOXYGENASE</td>
<td>August 27, 2019</td>
<td>US 10,392,646</td>
<td>22</td>
</tr>
<tr>
<td>DEVICE AND METHODS OF USING DEVICE FOR DETECTION OF AMINOACIDOPATHIES</td>
<td>September 3, 2019</td>
<td>US 10,399,943</td>
<td>24</td>
</tr>
<tr>
<td>AMIDO COMPOUNDS AS RORγT MODULATORS AND USES THEREOF</td>
<td>September 10, 2019</td>
<td>US 10,407,392</td>
<td>26</td>
</tr>
<tr>
<td>MUTANT IDH1 INHIBITORS USEFUL FOR TREATING CANCER</td>
<td>September 17, 2019</td>
<td>US 10,413,548</td>
<td>28</td>
</tr>
<tr>
<td>METHODS AND COMPOSITIONS FOR THE INHIBITION OF PIN1</td>
<td>September 24, 2019</td>
<td>US 10,421,741</td>
<td>30</td>
</tr>
<tr>
<td>MUTANT IDH1 INHIBITORS USEFUL FOR TREATING CANCER</td>
<td>October 1, 2019</td>
<td>US 10,428,025</td>
<td>32</td>
</tr>
<tr>
<td>ANTFUNGAL COMPOUND PROCESS</td>
<td>July 7, 2020</td>
<td>US 10,703,746</td>
<td>44</td>
</tr>
<tr>
<td>INDEX OF PATENTS AND INVENTORS</td>
<td></td>
<td></td>
<td>46</td>
</tr>
</tbody>
</table>
MODULATORS OF THE RELAXIN RECEPTOR 1

PATENT NUMBER: US 10,125,112

ISSUE DATE: November 13, 2018

LEGAL ASSIGNEES:
The United States of America, as represented by The Secretary, Department of Health and Human Services, Washington, DC (US);
The Florida International University Board of Trustees, Miami, FL

INVENTORS:
Juan Jose Marugan, Gaithersburg, MD
Jingbo Xiao, Rockville, MD
Marc Ferrer-Alegre, Potomac, MD
Catherine Chen, Germantown, MD
Noel Southall, Potomac, MD
Wei Zheng, Potomac, MD
Alexander Agoulnik, Miami, FL
Irina Agoulnik, Miami, FL

ABSTRACT:
Pulmonary arterial hypertension (PAH) is a rare, progressive condition affecting the heart and lungs. It is characterized by abnormally high blood pressure (hypertension) in the pulmonary artery that carries blood from the heart to the lungs. The most common symptoms are shortness of breath during exertion and fainting spells, and as the condition worsens, patients can experience dizziness, swelling of the lower extremities, chest pain and a racing pulse. Effective treatments are lacking for patients whose condition is driven by fibrotic processes that damage the lungs.

This innovation is directed to novel small molecule agonists of the mammalian relaxin family receptor 1 (RXFP1), including human RXFP1. Activation of RXFP1 induces: 1) widening of blood vessels due to up-regulation of the endothelin system; 2) extracellular matrix remodeling; 3) moderation of inflammation by reducing levels of inflammatory cytokines; and 4) angiogenesis. In an animal model of chemically induced fibrosis, these compounds have shown to reverse fibrotic damage. Small molecule agonists of RXFP1 may be useful in treating acute heart failure (AHF), scleroderma, fibrosis, other conditions associated with the biology of relaxin, and in improving reproductive health and wound healing. These compounds are the first and only small molecule agonists of RXFP1.

USPTO WEBSITE: https://go.usa.gov/xf6vP
MODULATORS OF THE RELAXIN RECEPTOR 1

Applicant: The United States of America, as represented by the Secretary, Department of Health and Human Services, Washington, DC (US); The Florida International University Board of Trustees, Miami, FL (US)

Inventors: Juan Jose Marugan, Gaithersburg, MD (US); Jingbo Xian, Rockville, MD (US); Marc Ferrer-Alegre, Pompano, FL (US); Catherine Chen, Germantown, MD (US); Noel Southall, Pompano, FL (US); Wei Zheng, Pompano, FL (US); Alexander Agoulnik, Miami, FL (US); Irina Agoulnik, Miami, FL (US)

Assignee: THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES, Washington, DC (US); THE FLORIDA INTERNATIONAL UNIVERSITY BOARD OF TRUSTEES, Miami, FL (US)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(a) by 6 days.

Appl. No.: 15/247,438
Filed: Aug. 25, 2016

Prior Publication Data

Related U.S. Application Data
Division of application No. 14/398,830, filed as application No. PCT/US2013/052231 on Mar. 15, 2013, now Pat. No. 9,452,973.

U.S. CL.
CPC C07D 333/38 (2013.01); C07C 237/42 (2013.01); C07C 255/60 (2013.01); C07C 317/40 (2013.01); C07C 323/42 (2013.01); C07D 269/08 (2013.01); C07D 213/26 (2013.01); C07D 213/81 (2013.01); C07D 213/82 (2013.01); C07D 255/08 (2013.01); C07D 255/14 (2013.01); C07D 257/04 (2013.01); C07D 261/18 (2013.01); C07D 295/088 (2013.01); C07D 295/205 (2013.01); C07D 307/52 (2013.01); C07D 307/65 (2013.01); C07D 317/66 (2013.01); C07D 317/68 (2013.01); C07D 333/20 (2013.01)

Field of Classification Search
CPC C07C 233/64; C07C 233/57; A61K 31/166
USPC ... 554/155; 514/316
See application file for complete search history.

References Cited
U.S. PATENT DOCUMENTS
(Continued)

FOREIGN PATENT DOCUMENTS

OTHER PUBLICATIONS
(Continued)

Primary Examiner — Chamjil Ahn

Attorney, Agent, or Firm — Cantor Coltman LLP

ABSTRACT
Disclosed are modulators of the human relaxin receptor 1, for example, of formula (1), wherein A, R¹, and R² are as defined herein, that are useful in treating naturally relaxin receptor 1 mediated facets of human health, e.g., cardiovascular disease. Also disclosed is a composition comprising a pharmaceutically suitable carrier and at least one compound of the disclosure, and a method for therapeutic intervention in a facet of mammalian health that is mediated by a human relaxin receptor 1.

3 Claims, 9 Drawing Sheets
Cryptococcal meningitis (CM) results from fungal infections that are particularly prevalent in immune-compromised patients. CM is the second leading cause of HIV-related deaths in sub-Saharan Africa, with estimates of 500,000 deaths per year as current therapies are only marginally effective. CM results from infection by the encapsulated yeasts Cryptococcus neoformans and Cryptococcus gattii and is observed predominately in immune-compromised individuals. The most common drug treatment for CM in this patient population is high-dose fluconazole monotherapy, however, it achieves only a 40 percent survival rate after 10 weeks of treatment. A more potent anti-fungal drug that can be given orally once a day would likely provide a significant improvement in survival for this neglected population. VT-1129 is a novel fungus-specific Cyp51 inhibitor with potent in vitro activity against Cryptococcus species. This agent acts by inhibiting the fungal cytochrome P450 enzyme Cyp51 (lanosterol 14-α-demethylase), thus inhibiting the biosynthesis of ergosterol in a highly selective manner compared to that of clinically available azole antifungals.

The present invention provides novel methods of commercial scale manufacturing of VT-1129. The inventors have developed an optimized synthetic process for scaled-up production of drug at a low cost that will support treatment of patients in the developing world.
(54) ANTI-FUNGAL COMPOUND PROCESS

(71) Applicant: Mycopia Pharmaceuticals, Inc., Durham, NC (US); The United States of America, as represented by the Secretary, Department of Health and Human Services, Washington, DC (US)

(72) Inventors: William J. Hoekstra, Durham, NC (US); Christopher M. Yates, Raleigh, NC (US); Mark Berman, Pooleville, MD (US); Asaf Alimardanov, North Bethesda, MD (US); Scott A. David, Charlotte, NC (US); Thomas P. Sicard, OH (US); Douglas Franklin Fry, Fuquay, OH (US)

(73) Assignee: Mycopia Pharmaceuticals, Inc., Durham, NC (US); The United States of America, as represented by the Secretary, Department of Health and Human Services, Washington, DC (US)

(56) References Cited
U.S. PATENT DOCUMENTS

(57) ABSTRACT
The present invention relates to a process for preparing compound 1 that is useful as an antifungal agent. In particular, the invention seeks to provide new methodology for preparing compound 1 and substituted derivatives thereof.

16 Claims, No Drawings
HETEROCYCLIC COMPOUNDS AND METHODS OF USE THEREOF

PATENT NUMBER: US 10,202,367

INVENTORS:
Tsanyang Liang, Potomac, MD
Zongyi Hu, Potomac, MD
Juan Jose Marugan, Gaithersburg, MD
Noel Terrence Southall, Potomac, MD
Shanshan He, North Bethesda, MD
Xin Hu, Frederick, MD
Jingbo Xiao, Rockville, MD
Marc Ferrer, Potomac, MD
Wei Zheng, Potomac, MD
Kevin J. Frankowski, Lawrence, KS
Frank J. Schoenen, Lawrence, KS
Kelin Li, Lawrence, KS

ISSUE DATE: February 12, 2019

LEGAL ASSIGNNEES:
The United States of America, as represented by the Secretary, Department of Health and Human Services, Washington, DC (US);
University of Kansas, Lawrence, KS (US)

ABSTRACT:
Most people infected with Hepatitis C Virus (HCV) have chronic infection of the liver. Over decades, this can lead to liver disease and liver cancer. In fact, HCV infection is the leading cause of liver transplants in the United States. Although, several new drugs have recently come into the market that have changed the HCV treatment paradigm, the effectiveness of these new drugs can vary depending on the HCV genotype. While most oral, interferon free therapeutic regimens for HCV infection will need combinations of drugs that target different aspects of the HCV life cycle, there is still the need for additional new therapeutics against HCV.

The present innovation provides aryloxazole based small molecules that are potent inhibitors of HCV infection and replication. The compounds represent a new class of anti-HCV compounds and exhibit synergy with currently available therapeutics for HCV. The compounds affect the entry step of HCV infection, a step not targeted by currently available therapeutics against HCV.

USPTO WEBSITE: https://go.usa.gov/xf6vp
United States Patent
Liang et al.

HETEROCYCCLIC COMPOUNDS AND METHODS OF USE, THEREOF

Applicants: The United States of America, as represented by the Secretary, Department of Health and Human Services, Washington, DC (US); University of Kansas, Lawrence, KS (US)

Inventors: Tianyang Liang, Potomac, MD (US); Zongyi Hu, Potomac, MD (US); Juan Jose Marugan, Gaithersburg, MD (US); Noel Terrence Southall, Potomac, MD (US); Shanshan He, North Bethesda, MD (US); Xin Hu, Frederick, MD (US); Jingbo Xiao, Rockville, MD (US); Marc Ferrer, Potomac, MD (US); Wei Zheng, Potomac, MD (US); Kevin J. Frankowski, Lawrence, KS (US); Frank J. Schoenhen, Lawrence, KS (US); Kelvin Li, Lawrence, KS (US)

Assignee: The United States of America, as represented by the Secretary, Department of Health and Human Services, Washington, DC (US); University of Kansas, Lawrence, KS (US)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

Appl. No.: 15/317,864
PCT Filed: Jun. 12, 2015
PCT No.: PCT/US2015/038658
§ 371(c)(1), (2) Date: Dec. 9, 2016
PCT Pub. No.: WO2015/192077
PCT Pub. Date: Dec. 17, 2015
Prior Publication Data
US 2017/0114053 A1 Apr. 27, 2017

Related U.S. Application Data
Provisional application No. 62/011,462, filed on Jun. 12, 2014.

Int. Cl
C07D 413/14 (2006.01)
A61K 31/4545 (2006.01)
(Continued)

U.S. Cl
CPC .. C07D 413/46 (2013.01); A61K 31/4178 (2013.01); A61K 31/4176 (2013.01); A61K 31/496 (2013.01); A61K 31/495 (2013.01); A61K 31/454 (2013.01); A61K 31/454 (2013.01); A61K 31/496 (2013.01); A61K 31/377 (2013.01); A61K 31/456

6 Claims, 3 Drawing Sheets

ABSTRACT

Disclosed are compounds of formula (1), formula (II), and formula (III), wherein Ar, R', A, and X are as defined in the specification. These compounds are antiviral agents and are contemplated for use in the treatment of viral infections, for example, hepatitis C. These compounds are also contemplated for use in treating or preventing cancers.

(1)

(II)

(III)
BENZENESULFONAMIDE UPREGULATORS OF NPCL FOR NEIMANN-PICK DISEASE AND OTHER LYSOSOMAL STORAGE DISORDERS

PATENT NUMBER: US 10,239,830

INVENTORS:
Samarjit Patnaik, Rockville, MD
Mercedes Taylor, Berkeley, CA
Raul Rolando Calvo, Rockville, MD
Juan Jose Marugan, Rockville, MD
Noel Southall, Rockville, MD
Wei Zheng, Rockville, MD
Marc Ferrer-Alegre, Rockville, MD
Seameen Dehdasthi, Rockville, MD
Patricia Dranchak, Rockville, MD
Fannie Chen, New York, NY
Yiannis Ioannou, New York, NY

ISSUE DATE: March 26, 2019

LEGAL ASSIGNEES:
Icahn School of Medicine At Mount Sinai,
New York, NY;
The United States of America Department
of Health and Human Services, Washington,
DC (US)

ABSTRACT:
Lysosomal storage disorders (LSDs), are a group of approximately 60 metabolic disorders that result from a deficiency of a lysosomal protein. Niemann-Pick disease, one example of the LSDs, refers to disorders in which cholesterol, sphingomyelin, and other lipids accumulate in lysosomes. Niemann-Pick type C is biochemically, genetically and clinically distinct from Niemann-Pick Types A and B. In Niemann-Pick type C, the protein product of the major mutated gene NPC 1 is not an enzyme but appears to function as a transporter in the endosomal-lysosomal system, whose deficiency leads to an accumulation of cholesterol, sphingolipids, gangliosides, and fatty acids in the endosomal-lysosomal system. Niemann-Pick C is always fatal. While the majority of children with this disease die before the age of 20, many die before the age of 10.

The invention is directed to pharmaceutical compositions and methods for upregulating the NPC1 promoter and thereby treating lysosomal storage disorders. The present invention provides methods and compositions for treating several lysosomal storage disorders including Niemann-Pick C, Niemann-Pick A/B, Fabry Disease, Farber Disease, Wolman Disease, Gaucher’s Disease, Krabbe Disease, MPS VII (mucopolysaccharidosis VII), Neuronal Ceroid Lipofuscinosis Type 2 (CLN 2), and Pompe Disease.

USPTO WEBSITE: https://go.usa.gov/xf6wN
(54) BENZENESULFONAMIDE UPREGULATORS
OF NPT1 FOR NEUROFUNGAL
DISEASES AND OTHER DISORDERS

(71) Applicants: ICahn SChool of Medicine
At Mount Sinai, New York, NY
US: The United States of America,
as represented by the Secretary,
Department of Health and Human
Services, Washington, DC (US)

(72) Inventors: SamirK Patnaik, Rockville, MD (US);
Mercedes Taylor, Berkeley, CA (US);
Raul Rolando Calvo, Rockville, MD
(US); Juan Jose Marigan, Rockville,
MD (US); Noel Southall, Rockville,
MD (US); Wei Zheng, Rockville, MD
(US); Marc Ferrer-Alegre, Rockville,
MD (US); Seameen Dehdasthi,
Rockville, MD (US); Patricia
Drachuk, Rockville, MD (US);
Fannnie Chen, New York, NY (US);
Yamini Inamdar, New York, NY (US)

(73) Assignee: ICAHN SChool of Medicine
At Mount Sinai, New York, NY
US: The United States of America,
as represented by the Secretary,
Department of Health and Human
Services, Washington, DC (US)

(17) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 15/549,743
(22) PCT Filed: Feb. 11, 2016
(30) PCT No.: PCT/US2016/017504
(32) filed: Aug. 9, 2017
(39) PCT Pub. No.: WO2016/150774
(39) PUB. Date. Aug. 18, 2016

(51) Int. Cl
C07C 311/21 (2006.01)
A61K 31/416 (2006.01)
A61K 31/44 (2006.01)

(52) U.S. Cl.
C07D 207/235 (2006.01)
C07D 213/36 (2006.01)
C07D 311/66 (2006.01)
A61K 31/165 (2006.01)

(57) Field of Classification Search
CPC ... C07C 311/21; A61K 31/4164; A61K 31/44;
C07D 207/335; C07D 213/46; C07D 233/64

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS
2016/0184799 A1, 7/2016, Shen et al.

FOREIGN PATENT DOCUMENTS
WO 02/54022 A1, 5/2004
WO 2013/021655 A1, 12/2013
WO 2015/04212 A1, 1/2015

OTHER PUBLICATIONS

* cited by examiner

Primary Examiner: Timothy R. Rowntree
Attorney, Agent, or Firm: Hanlon Rothenberg
Farley & Mathis, P.C., Philip Hansen

(57) ABSTRACT
Methods and compositions for treating lysosomal storage
diseases are disclosed. The methods involve administering a
group of benzene sulfonamides, particularly N-[3-(amino-
sulfonyl)phenyl]benzamides and heterocyclic benzamides. A
group of suitable compounds is shown in formula 1:

28 Claims, No Drawings
4-(((2-HYDROXY-3-METHOXYBENZYL)AMINO) BENZENESULFONAMIDE DERIVATIVES AS POTENT AND SELECTIVE INHIBITORS OF 12-LIPOXYGENASE

PATENT NUMBER: US 10,266,488

INVENTORS:
David J. Maloney, Point Of Rocks, MD
Diane K. Luci, Germantown, MD
Ajit Jadhav, Chantilly, VA
Theodore Holman, Santa Cruz, CA
Jerry L. Nadler, Norfolk, VA
Michael Holinstat, Wallingford, PA
David Taylor-Fishwick, Norfolk, VA
Anton Simeonov, Bethesda, MD
Adam Yasgar, Washington, DC
Steven McKenzie, Springfield, PA

ISSUE DATE: April 23, 2019

LEGAL ASSIGNEES:
Eastern Virginia Medical School, Norfolk, VA (US);
The Regents of the University of California Santa Cruz, Santa Cruz, CA (US);
The United States of America Department of Health and Human Services, Washington, DC (US);
Thomas Jefferson University, Philadelphia, PA

ABSTRACT:
Human lipoxygenases (LOXs) are a family of iron-containing enzymes involved in catalyzing the oxidation of polyunsaturated fatty acids to provide the corresponding bioactive hydroxyeicosatetraenoic acid (HETE) metabolites. These bioactive molecules are involved in several physiologic responses such as platelet aggregation, inflammation, and cell proliferation. Platelet-type 12-(S)-LOX(12-LOX) is of particular interest because of its demonstrated role in skin diseases, diabetes, platelet hemostasis, thrombosis, and cancer.

The present innovation provides for the identification of compounds of a 4-(((2-hydroxy- 3-methoxybenzyl) amino) benzenesulfonamide-based scaffold. The compounds display nanomolar (nM) potency against 12-LOX and excellent selectivity over related lipoxygenases and cyclooxygenases. In addition to possessing favorable ADME properties, the compounds also inhibit PAR-4 induced aggregation and calcium mobilization in human platelets and reduce 12-HETE in mouse/human beta cells. The compounds can also be used in methods for treating or preventing a 12-lipoxygenase mediated disease or disorder.

USPTO WEBSITE: https://go.usa.gov/xf6wn
4-(2-HYDROXY-3-METHOXYBENZYL)AMINO)BENZENESULFONAMIDE DERIVATIVES AS POTENT AND SELECTIVE INHIBITORS OF 12-LIPOXYGENASE

Applicants: Eastern Virginia Medical School, Norfolk, VA (US); THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, SANTA CRUZ, Oakland, CA (US); THE UNITED STATES OF AMERICA DEPARTMENT OF HEALTH AND HUMAN SERVICES, Bethesda, MD (US); Thomas Jefferson University, Philadelphia, PA (US)

Inventors: David J. Maloney, Point Of Rocks, MD (US); Diane K. Luci, Greensboro, MD (US); Ajit Jadhav, Chantilly, VA (US); Theodore Holman, Santa Cruz, CA (US); Jerry L. Nadler, Norfolk, VA (US); Michael Hollinstat, Wallingford, PA (US); David Taylor-Velichkoff, Norfolk, VA (LS); Anton Simeonov, Bethesda, MD (US); Adam Yagner, Washington, DC (US); Steven McKenzie, Springfield, PA (US)

Assignee: Eastern Virginia Medical School, Norfolk, VA (US); The Regents of the University of California Santa Cruz, Santa Cruz, CA (US); The United States of America Department of Health and Human Services, Washington, DC (US); Thomas Jefferson University, Philadelphia, PA (US)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(a) by 0 days.

Appl. No.: 15/028,386
PCT Filed: Oct. 10, 2014
PCT No.: PCT/US2014/060174
§ 371 (a)(1), (2) Date: Apr. 8, 2016
PCT Pub. No.: WO2015/084662
PCT Pub. Date: Apr. 16, 2015

Prior Publication Data

Related U.S. Application Data
Provisional application No. 61/887,129, filed on May 1, 2014, provisional application No. 61/890,396, filed on Oct. 10, 2013.

Int. Cl.
C07D 277/82 (2006.01)
C07D 225/30 (2006.01)

U.S. Cl.
CPC C07C 31/14 (2013.01); A61P 7/02 (2018.01); C07D 211/28 (2013.01)

Field of Classification Search
See application file for complete search history.

References Cited
U.S. PATENT DOCUMENTS

FOREIGN PATENT DOCUMENTS
AU 2012241937 11/2011
AU 201202912 5/2013

OTHER PUBLICATIONS

Primary Examiner — Anna Pagonakis
Attorney, Agent, or Firm Wilmer Cutler Pickering Hale and Dorr LLP

ABSTRACT
Human lipoygenases (LOXs) are a family of iron-containing enzymes involved in catalyzing the oxidation of polyunsaturated fatty acids to provide the corresponding bioactive hydroxyeicosatetraenoic acid (HETE) metabolites. These eicosanoid signaling molecules are involved in a
INHIBITORS OF HUMAN 12/15-LIPOXYGENASE

PATENT NUMBER: US 10,287,279

INVENTORS:
Klaus Joachin Van Leyen, Medford, MA
Theodore R. Holman, Santa Cruz, CA
David J. Maloney, Point of Rocks, MD
Ajit Jadhav, Chantilly, VA
Anton Simeonov, Santa Cruz, CA
Ganesha Rai, Arlington, VA

ISSUE DATE: May 14, 2019

LEGAL ASSIGNEES:
The Children's Hospital Corporation, Boston, MA (US);
The Regents of The University of California, Oakland, CA (US);
The United States of America, as represented by The Secretary, Department of Health and Human Services, Washington, DC (US)

ABSTRACT:
Lipoxygenases are a family of lipid-oxidizing enzymes, which generate eicosanoids and related compounds from arachidonic acid and other polyunsaturated fatty acids. Human lipoxygenases and their metabolites have been implicated in numerous diseases. 5-LOX has been implicated in cancer, asthma, COPD, allergic rhinitis, osteoarthritis, and atherosclerosis, while platelet-type 12-LOX has been implicated in diabetes, blood coagulation, psoriasis, and cancer. Human reticulocyte 15-lipoxygenase-1 (12/15-LOX, aka 15-LOX-1) is also an attractive therapeutic target, particularly for its role in atherogenesis, diabetes, Alzheimer’s, newborn periventricular leukomalacia, breast cancer, and stroke. The difficulty in developing inhibitors that target LOX homologues in both species is that they have different substrate and inhibitor specificities. Thus, existing inhibitors of 12/15-LOX are typically not very selective with regards to other LOX isoforms, and many additionally are strong antioxidants.

The present invention provides compositions and methods for treating a condition involving 12/15-lipoxygenase. Through a systematic succession of high throughput screening steps, the inventors have identified novel inhibitors of human 12/15-lipoxygenase (12/15-LOX), which also targets the mouse 12/15-LOX homologue. The compositions and methods of the present invention can be used for the treatment of a condition involving 12/15-lipoxygenase such as stroke, periventricular leukomalacia, cardiac arrest with resuscitation, atherosclerosis, Parkinson’s disease, Alzheimer’s disease, and breast cancer.

USPTO WEBSITE: https://go.usa.gov/xf6wd
United States Patent

Van Leen et al.

INHIBITORS OF HUMAN 12/15-LOXOXYGENASE

Applicants: THE GENERAL HOSPITAL CORPORATION, Boston, MA (US); THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, Oakland, CA (US); THE UNITED STATES OF AMERICA, as represented by the Secretary, Department of Health and Human Services, Washington, DC (US)

Inventors: Klaus Joachim Van Leen, Medford, MA (US); Theodore R. Holman, Santa Cruz, CA (US); David J. Maloney, Point of Rocks, MD (US); Ajit Jadhav, Chantilly, VA (US); Anton Simenov, Santa Cruz, CA (US); Ganesh Rai, Arlington, VA (US)

Assignee: THE CHILDREN'S HOSPITAL CORPORATION, Boston, MA (US); THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, Oakland, CA (US); THE UNITED STATES OF AMERICA, as represented by the Secretary, Department of Health and Human Services, Washington, DC (US)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 145 by 0 days.

Appl. No.: 15/048,330
Filed: Feb. 19, 2016

Prior Publication Data

Related U.S. Application Data
Continuation-in-part of application No. 13/718,052, filed Aug. 22, 2014.

Provisional application No. 61/868,611, filed Aug. 22, 2013.

Abstract
A systematic screening has revealed a family of compounds that exhibit inhibitory effects on 12/15-LOXOXYGENASE. Accordingly, the present invention relates to the use of these compounds for the inhibition of 12/15-LOXOXYGENASE and for the treatment of a condition involving 12/15-LOXOXYGENASE. Living conditions include, but are not limited to, stroke, periventricular leukomacia, cardiac arrest with resuscitation, atherosclerosis, Parkinson's disease, Alzheimer's disease, and breast cancer.

19 Claims, 12 Drawing Sheets
ABSTRACT:
Pancreatic cancer is the fourth leading cause of cancer-related deaths. As the disease progresses, cancer cells travel (metastasize) from the pancreas to other parts of the body. Despite substantial improvements in cancer patient survival, metastatic diseases remain ineffectively treated. The majority of pancreatic cancer patients are diagnosed only after the cancer has spread, and nearly all patients die because of the metastasis spreading to other organs.

The perinucleolar compartment (PNC) is a subcellular structure whose formation closely associates with metastatic potential of cancer cells. It is highly prevalent in metastatic tumors, metastatically transformed cancer cell lines, and cancer stem cells. A high PNC prevalence positively correlates with disease progression (stages and grades) in tested primary tumors, including breast, colorectal, and ovarian cancers, and inversely correlates with patient outcomes.

To identify compounds selectively targeting the metastatic state, the inventors used the perinuclear compartment (PNC), a complex nuclear structure associated with metastatic behaviors of cancer cells, as a phenotypic marker for a high-content screen of over 140,000 structurally diverse compounds. Metarrestin, was identified during a high content screen of ~140,000 compounds, as able to disassemble PNCs in multiple cancer cell lines, inhibit invasion in vitro, block metastatic development in three mouse models of human cancer, and extend survival of mice in a metastatic pancreatic cancer with no organ toxicity or discernable adverse effects. Altogether, metarrestin represents a potential therapeutic approach for the treatment of metastatic cancer.
(54) COMPOUNDS AND METHODS FOR THE PREVENTION AND TREATMENT OF TUMOR METASTASIS AND TUMORIGENESIS

(71) Applicant: The United States of America, as represented by the Secretary, Department of Health and Human Services, Washington, DC (US); University of Kansas, Lawrence, KS (US); Northwestern University, Evanston, IL (US)

(72) Inventors: Kevin Frankowski, Lawrence, KS (US); Samarjit Patnaik, Gaithersburg, MD (US); Sui Huang, Evanston, IL (US); Junior Jose Murugan, Gaithersburg, MD (US); John Norton, San Diego, CA (US); Frank J. Schoenen, Lawrence, KS (US); Noel Terrence Southall, Chevy Chase, MD (US); Steven Titus, Elkridge, MD (US); Wei Zheng, Provo, UT (US); Chen Wang, Chicago, IL (US)

(73) Assignee: The United States of America, as represented by the Secretary, Department of Health and Human Services, Washington, DC (US); University of Kansas, Lawrence, KS (US); Northwestern University, Evanston, IL (US)

(21) Appl. No.: 15/606,740
(22) Filed: May 26, 2017

Prior Publication Data

(65) Related U.S. Application Data

Continuation of application No. 14/364,759, filed as application No. 13/745,810 on Sep. 14, 2013.

(60) Provisional application No. 61/576,780, filed on Dec. 16, 2011.

(51) Int. CL

A61K 31/519
A61K 35/04
A61P 35/04
A61Q 35/04
A61P 35/04
A61K 31/519
A61K 31/519
A61K 35/04
A61K 35/04
A61K 31/519
A61K 35/04

Claims

9 Claims, 1 Drawing Sheet
SMALL MOLECULE INHIBITORS OF LACTATE DEHYDROGENASE AND METHODS OF USE THEREOF

PATENT NUMBER: US 10,351,532
ISSUE DATE: July 16, 2019

INVENTORS:
David J. Maloney, Point of Rocks, MD
Alex Gregory Waterson, Nashville, TN
Ganesh Rai Bantukallu, Arlington, VA
Kyle Ryan Brimacombe, Bethesda, MD
Plamen Christov, Nashville, TN
Chi V. Dang, Penn Valley, PA
Victor Darley-Usmar, Birmingham, AL
Xin Hu, Fredrick, MD
Ajit Jadhav, Chantilly, VA
Somnath Jana, Nashville, TN
Kwangho Kim, Nashville, TN
Jennifer L. Kouznetsova, Silver Spring, MD
William J. Moore, Hagerstown, MD
Bryan T. Mott, College Park, MD
Leonard M. Neckers, Bethesda, MD
Anton Simeonov, Bethesda, MD
Gary Allen Sulikowski, Nashville, TN
Daniel Jason Urban, Rockville, MD
Shyh Ming Yang, Doylestown, PA

LEGAL ASSIGNEES:
The United States of America, as represented by the Secretary, Department of Health and Human Services, Washington, DC (US);
Vanderbilt University, Nashville, TN (US);
The UAB Research Foundation, Birmingham, AL (US);
The Trustees of The University of Pennsylvania, Philadelphia, PA (US)

ABSTRACT:
Agents that target enzymes involved in cancer cell metabolism offer an attractive therapeutic route in view of the potential to preferentially target cancer tissue over normal tissue. While normal tissue typically uses glycolysis as a major cellular metabolic path only when the oxygen supply is low, cancer tissue relies heavily on aerobic glycolysis regardless of the oxygen supply level. Lactate dehydrogenase (LDH) is involved in the final step of glycolysis, in which pyruvate is converted to lactate and the conversion of NADH to NAD+. There are two different genes of LDH, LDHA, and LDHB, but both proteins have the same active site and catalyze the conversion of pyruvate to lactate or lactate to pyruvate. LDH inhibition is expected to reduce the ability of the cell to effectively metabolize glucose and reduce tumor cell proliferation and tumor growth and other pathologies which involve a glycolytic metabolic switch. Thus, compounds that inhibit LDH activity have potential for the development of anti-cancer therapeutics. Previously developed LDH inhibitors have significant drawbacks, including poor potency and/or poor bioavailability, limiting their utility as therapeutics.

The present technology provides novel 1 H-PYRAZOL-1-YL-THIAZOLE based LDH compounds with improved potency, selectivity, and/or bioavailability for the treatment of cancer.

USPTO WEBSITE: https://go.usa.gov/xf6Sh
United States Patent
Maloney et al.

SMALL MOLECULE INHIBITORS OF LACTATE DEHYDROGENASE AND METHODS OF USE THEREOF

Applicants: THE UNITED STATES OF AMERICA AS REPRESENTED BY THE SECRETARY, DEPARTMENT OF H.E., Bethesda, MD (US); VANDERBILT UNIVERSITY, Nashville, TN (US); The UAB Research Foundation, Birmingham, AL (US); The Trustees of the University of Pennsylvania, Philadelphia, PA (US)

Inventors: David J. Maloney, Point of Rocks, MD (US); Alex Gregory Waterson, Nashville, TN (US); Ganesh Rai Bhati, Arlington, VA (US); Kyle Ryan Brinecombe, Bethesda, MD (US); Plamena Christov, Nashville, TN (US); Chi V. Dang, Peoria Valley, PA (US); Victor Darley-Usmar, Birmingham, AL (US); Xin Hu, Frederick, MD (US); Ajit Jadhav, Chantilly, VA (US); Sonamath Jana, Nashville, TN (US); Kwangcho Kim, Nashville, TN (US); Jennifer L. Konznetsova, Silver Spring, MD (US); William J. Moore, Hagerstown, MD (US); Bryan T. Mott, College Park, MD (US); Leonard M. Neetters, Bethesda, MD (US); Anton Stienowev, Bethesda, MD (US); Gary Allen Sullivan, Nashville, TN (US); Daniel Jason Urban, Rockville, MD (US); Shyh Ming Yang, Doylestown, PA (US)

Assignee: THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES, Washington, DC (US); VANDERBILT UNIVERSITY, Nashville, TN (US); THE UAB RESEARCH FOUNDATION, Birmingham, AL, (US); THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA, Philadelphia, PA (US)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(a) by 0 days.

Appl. No.: 15/540,893

(10) Patent No.: US 10,351,532 B2

(45) Date of Patent: Jul. 16, 2019

PCT Pub. No.: WO2016/109559

PCT Pub. Date: Jul. 7, 2016

Prior Publication Data
US 2018/0273488 A1 Sep. 27, 2018

Related U.S. Application Data

Provisional application No. 62/097,226, filed on Dec. 29, 2014.

Int. Cl.
C07D 231/20 (2006.01)
C07D 231/38 (2006.01)

(Continued)

U.S. Cl.
C07D 231/20 (2013.01); A61K 31/415 (2013.01); A61K 31/4175 (2013.01); A61K 31/4133 (2013.01); A61K 31/413 (2013.01); A61K 31/417 (2013.01)

(Continued)

Field of Classification Search
CPC ... C07D 231/20; C07D 231/38; C07D 401/04; C07D 403/04; C07D 403/06

(Continued)

References Cited

U.S. PATENT DOCUMENTS
5,432,280 A 1/1995 Ling et al
5,432,851 A 8/1995 Samulase et al

(Continued)

FOREIGN PATENT DOCUMENTS

(Continued)

OTHER PUBLICATIONS

(Continued)

Primary Examiner — Timothy R Rozaf

Agents, Attorneys, or Firm — Cantor Colburn LLP

(21) Appl. No.: 15/540,893

(22) PCT Filed: Dec. 29, 2015

(46) PCT No.: PCT/US2015/057895

(21) Date: Jun. 29, 2017

(22) Date: Jun. 29, 2017

ABSTRACT

Provided is a compound of formula (I), in which A, R, R', U, V, W, X, and Y are as described herein. Also provided are methods of using a compound of formula (I), including a method of treating cancer, a method of treating a patient with cancer cells resistant to an anti-cancer agent, and a method of inhibiting lactate dehydrogenase A (LDHA) and/or lactate dehydrogenase B (LDHB) activity in a cell.

(Continued)
TOCOPHEROL AND TOCOPHERYL QUINONE DERIVATIVES AS CORRECTORS OF LYSOSOMAL STORAGE DISORDERS

PATENT NUMBER: US 10,370,348

INVENTORS:
Juan Jose Marugan, Gaithersburg, MD
Wei Zheng, Potomac, MD
Jingbo Xiao, Rockville, MD
John McKew, Poolesville, MD

ISSUE DATE: August 6, 2019

LEGAL ASSIGNEES:
The United States of America, as represented by the Secretary, Department of Health and Human Services, Washington, DC (US);

ABSTRACT:
This innovation provides for novel tocopherol derivatives and tocopheryl quinone derivatives useful in the decrease of lysosomal substrate accumulation, the restoration of normal lysosomal size, and the treatment of lysosomal storage disorders (LSDs). The inventors have discovered that tocopherol and tocopheryl quinone derivatives with side chain modifications (such as terminal tri-halogenated methyl groups) exhibit improved pharmacokinetics, modulation of mitochondrial potential and restoration of some LSDs phenotypes. These molecules by themselves or in combination with Cyclodextrins (CDs) increase intracellular Ca2+ and enhance exocytosis.

Also, the treatment with these compounds reduced the pathological changes in LSD cells as observed using electron microscopy analysis. The inventors also found that there is a synergy between CDs and the new tocopherol analogues when tested on the NPC cells and cells from six other lysosomal storage diseases including Wolman, Niemann Pick Type A, Farber, TaySachs, MSIIIB, and CLN2 (Batten) diseases.

USPTO WEBSITE: https://go.usa.gov/xf6hC
(12) United States Patent
Marugan et al.

(10) Patent No.: US 10,370,348 B2
(45) Date of Patent: *Aug. 6, 2019

(54) TOCOPHEROL AND TOCOPHERYL QUINONE DERIVATIVES AS CORRECTORS OF LYSOSONAL STORAGE DISORDERS

(71) Applicant: The United States of America, as represented by the Secretary, Dept. of Health and Human Services, Washington, DC (US)

(72) Inventor: Juan Jose Marugan, Gaithersburg, MD (US); Wei Zheng, Potomac, MD (US); Jingbo Xiao, Rockville, MD (US); John McKew, Rockville, MD (US)

(73) Assignee: The United States of America, as represented by the Secretary, Department of Health and Human Services, Washington, DC (US)

(74) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(a) by 0 days. This patent is subject to a terminal disclaimer.

(21) Appl. No.: 15/608,753
(22) Filed: May 30, 2017
(65) Prior Publication Data
US 2018/0105565 A1 Apr. 19, 2018

Related U.S. Application Data

(53) Continuation of application No. 14/442,637, filed as application No. PCT/US2013/070156 on Nov. 14, 2013, now Pat. No. 9,663,485.

(51) Int. Cl.
A01N 43/16 (2006.01)
A61K 31/355 (2006.01)
C07D 31/58 (2006.01)
A61K 31/335 (2006.01)
A61K 31/335 (2006.01)
A61K 31/323 (2006.01)
A61K 31/322 (2006.01)
A61K 31/321 (2006.01)
A61K 31/724 (2006.01)
C07C 59/02 (2006.01)
C07C 59/06 (2006.01)
C07C 50/24 (2006.01)

(55) Field of Classification Search

(56) References Cited
U.S. PATENT DOCUMENTS
6,406,245 A 12/25/09 Biedert et al.
6,071,993 A 06/2000 Lang et al.

FOREIGN PATENT DOCUMENTS

OTHER PUBLICATIONS

Primary Examiner: Patrick T Lewis

(57) ABSTRACT
The subject invention relates to improved tocopherol quinine derivatives and tocopherol derivatives having improved pharmacokinetics in vivo that can, in some embodiments, be useful in the treatment of lysosomal Storage Disorder, restoration of normal mitochondrial ATP production, modulation of intracellular calcium ion concentration and other treatments or therapies. The tocopheryl quinine derivatives and tocopherol derivatives have side chains that have terminally halogenated carbon atoms.

1 Claim, 7 Drawing Sheets
Cryptococcal meningitis (CM) results from fungal infections that are particularly prevalent in immune-compromised patients. CM is the second leading cause of HIV-related deaths in sub-Saharan Africa, with estimates of 500,000 deaths per year as current therapies are only marginally effective. CM results from infection by the encapsulated yeasts Cryptococcus neoformans and Cryptococcus gattii and is observed predominately in immune-compromised individuals. The most common drug treatment for CM in this patient population is high-dose fluconazole monotherapy, however, it achieves only a 40 percent survival rate after 10 weeks of treatment. A more potent anti-fungal drug that can be given orally once a day would likely provide a significant improvement in survival for this neglected population. VT-1129 is a novel fungus-specific Cyp51 inhibitor with potent in vitro activity against Cryptococcus species. This agent acts by inhibiting the fungal cytochrome P450 enzyme Cyp51 (lanosterol 14α-demethylase), thus inhibiting the biosynthesis of ergosterol in a highly selective manner compared to that of clinically available azole antifungals.

The present invention provides novel methods of commercial scale manufacturing of VT-1129. The inventors have developed an optimized synthetic process for scaled-up production of drug at a low cost that will support treatment of patients in the developing world.

USPTO WEBSITE: https://go.usa.gov/xf6hV
(54) ANTIFUNGAL COMPOUND PROCESS

(71) Applicants: Mycova Pharmaceuticals, Inc., Durham, NC (US); The United States of America, as represented by the Secretary of Health and Human Services, Rockville, MD (US)

(72) Inventors: William J. Hoekstra, Durham, NC (US); Christopher M. Yates, Raleigh, NC (US); Mark Behmke, Pooler, GA (US); Asaf Allman-Dov, North Bethesda, MD (US); Scott A. David, Hamburg, OH (US); Douglas Franklin Fry, Lebanon, OH (US)

(73) Assignee: Mycova Pharmaceuticals, Inc., Durham, NC (US); The United States of America, as represented by the Secretary of Health and Human Services, Rockville, MD (US)

(9) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154 (b) by 0 days.

(21) Appl. No.: 16/241,836

(22) Filed: Jan. 7, 2019

(65) Prior Publication Data

Related U.S. Application Data

(50) Provisional application No. 61/955,615, filed on Mar. 19, 2014.

(51) Int. Cl.
C07D 213/26 (2006.01)
C07D 401/06 (2006.01)
C07D 405/06 (2006.01)
C07D 213/38 (2006.01)

(52) U.S. Cl.
CPC 401/06 (2013.01); C07D 213/26 (2013.01); C07D 213/38 (2013.01)

(58) Field of Classification Search
CPC 401/06 (2013.01)
USPC* 405/06 (2013.01)

(56) References Cited
U.S. PATENT DOCUMENTS
4,426,531 A 1/1984 Bisac et al.
8,236,962 B2 9/2012 Hoekstra et al.
8,748,661 B2 6/2014 Hoekstra et al.
8,756,061 B2 8/2014 Hoekstra et al.
8,809,375 B2 8/2014 Hoekstra et al.

(10) Patent No.: US 10,392,365 B2
(45) Date of Patent: Aug. 27, 2019

FOREIGN PATENT DOCUMENTS
JP 2000344741 A 12/2000
WO 201046103 A1 12/2010

OTHER PUBLICATIONS

Primary Examiner: Patrick J. Morris
(74) Attorney, Agent, or Firm — Brinks Gilson & Lione

(57) ABSTRACT
The present invention relates to a process for preparing compound I that is useful as an antifungal agent. In particular, the invention seeks to provide a new methodology for preparing compound I and substituted derivatives thereof.

2 Claims, No Drawings
DEVICE AND METHODS OF USING DEVICE FOR DETECTION OF AMINOACIDOPATHIES

PATENT NUMBER: US 10,392,646

INVENTORS:
Omar Bilal Ayyub, Potomac, MD
Adam Michael Behrens, Olney, MD
Peter Kofinas, Bethesda, MD
Marshall Lynn Summar, Washington, DC
Juan Manuel Cabrera-Luque, Rockville, MD
Gary Cunningham, Washington, DC
Anton Simeonov, Bethesda, MD
Juan Marugan, Gaithersburg, MD

ISSUE DATE: August 27, 2019

LEGAL ASSIGNNEES:
University of Maryland, College Park, College Park, MD (US);
Children’s National Medical Center, Washington, DC (US);
The United States of America, as represented by The Secretary, Department of Health and Human Services, Bethesda, MD (US)

ABSTRACT:
Numerous metabolic disorders, such as hyperammonemia and aminoacidopathies, are characterized by a chronic elevation of a specific metabolite due to dysfunction of enzymes involved in metabolic regulation, process and clearance. It would be of great utility and convenience to develop enzyme-based sensors that can detect specific plasma metabolites in real-time, similar to the measurement of glucose in diabetics.

In the present invention, specific enzymes are immobilized within a polymer and attached to an electrode that then measures the electron flow produced by the redox transformation of the specific metabolite being analyzed. The biosensor described here is capable of measuring one or more amino acids with the use of a point of care system that comprises an electrode modified by hydrogel that contains one or more enzymes that can oxidize the relevant amino acids. This invention is used to measure metabolites in blood of patients in real time. The invention also provides a method of monitoring the concentrations of one or more amino acids in a sample of bodily fluid of a person diagnosed or suspected as having one or more aminoacidopathies.

USPTO WEBSITE: https://go.usa.gov/xf6hf
UNITED STATES PATENT

Ayyub et al.

DEVICE AND METHODS OF USING DEVICE FOR DETECTION OF AMINOACIDOPHILES

Applicants: UNIVERSITY OF MARYLAND, OFFICE OF TECHNOLOGY COMMERCIALIZATION, College Park, MD (US); CHILDREN'S NATIONAL MEDICAL CENTER, Washington, DC (US); THE UNITED STATES OF AMERICA, as represented by the Secretary, Department of Health and Human Services, Washington, DC (US)

Inventors: Omar Bilal Ayyub, Potomac, MD (US); Adam Michael Behrancic, Olney, MD (US); Peter Kolmas, Bethesda, MD (US); Marshall Lynn Summar, Washington, DC (US); Juan Manuel Cabrera-Lague, Rockville, MD (US); Gary Cunningham, Washington, DC (US); Anton Simeonov, Bethesda, MD (US); Juan Marugan, Gaithersburg, MD (US)

Assignee: University of Maryland, College Park, College Park, MD (US); Children's National Medical Center, Washington, DC (US); The United States of America, as represented by the Secretary, Department of Health and Human Services, Bethesda, MD (US)

U.S. CL.
CPC C12Q 1/005 (2013.01); C12N 9/0018 (2013.01); C12N 9/0071 (2013.01); C12N 11/14 (2013.01); C12N 11/40 (2013.01); G01N 27/0277 (2013.01); G01N 33/6812 (2013.01); G01N 28/0004 (2013.01); G01N 28/0052 (2013.01)

Field of Classification Search
CPC C12N 11/04; C12N 11/10; C12N 9/0018; C12N 9/0071; C12Q 1/005; G01N 27/0277; G01N 28/0004; G01N 33/6812
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

4,254,222 A 3/1981 Owen
4,351,289 A 9/1982 Owen
4,806,341 A 2/1989 Carpenter et al.
4,809,545 A 7/1989 Arai et al.
4,907,814 A 10/1990 Parks et al.
4,966,856 A 10/1990 Ito et al.
5,326,697 A 7/1994 Macias

FOREIGN PATENT DOCUMENTS

(Continued)

G71HR PUBLICATIONS

(Continued)

Primary Examiner — Anna J. Kosor
(74) Attorney, Agent, or Firm — Ballard Spahr LLP; John A. Zunwalt

ABSTRACT

The present invention relates to a biosensor capable of measuring the total concentration of one or a plurality of amino acids with the use of a reagentless system comprising an electrode modified by hydrogel that comprises at least one enzyme that oxidizes at least one substrate that is at least one amino acid. In some embodiments, the biosensor comprises a hydrogel comprising alginate. In some embodiments the biosensor comprises use of a thermostable bacterial metabolic enzyme immobilized or attached to the hydrogel.

19 Claims, 23 Drawing Sheets

Specification includes a Sequence Listing.
ANTIFUNGAL COMPOUND PROCESS

PATENT NUMBER: US 10,399,943

INVENTORS:
William J. Hoekstra, Durham, NC
Christopher M. Yates, Raleigh, NC
Mark Behnke, Poolesville, MD
Asaf Alimardanov, North Bethesda, MD
Scott A. David, Huntsburg, OH
Douglas Franklin Fry, Euclid, OH

ISSUE DATE: September 3, 2019

LEGAL ASSIGNEES:
Mycovia Pharmaceuticals, Inc., Durham, NC (US);
The United States of America, as represented by the Secretary, Department of Health and Human Services, Rockville, MD (US)

ABSTRACT:
Vulvovaginal candidiasis (VVC) and recurrent VVC (RVVC) remain major health problems for women. RVVC is a debilitating, chronic infectious condition that affects quality of life for nearly 138 million women worldwide each year and for which there is currently no approved treatment. The azole class of drugs targeting fungal cytochrome P45051 (CYP51) is widely used as a first-line treatment for fungal infections or as preemptive treatment. However, several side effects exist and are linked to inhibition of off-target human cytochromes P450 (CYPs). Additionally, the widespread use of azole antifungals, especially for prolonged treatment periods, has led to the emergence of azole-resistant strains of Candida albicans and other Candida species. Fungal CYP51 inhibitors with greater selectivity for fungal CYP51 (than off-target human CYPs) could overcome these limitations and therefore become a significant advancement in the field of fungal therapy.

VT-1161 was identified and developed to fill the growing need to develop new effective antifungal drugs to combat the increasing occurrence of Candida resistance, especially for the treatment of deep systemic infections. VT-1161 is a novel, oral therapy for RVVC that is designed to have greater selectivity, fewer side effects, and improved efficacy than current treatment options. The present invention provides novel methods of commercial scale manufacturing of VT-1161. The inventors have developed an optimized synthetic process for scaled-up production of VT-1161 at a low cost that will support treatment of patients in the developing world.

USPTO WEBSITE: https://go.usa.gov/xf6hM
UNITED STATES PATENT

Hoekstra et al.

ANTIFUNGAL COMPOUND PROCESS

Applicants: Mycovia Pharmaceuticals, Inc., Durham, NC (US), The United States of America, as represented by the Secretary, Department of Health and Human Services, Washington, DC (US)

Inventors: William J. Hoekstra, Durham, NC (US); Christopher M. Yates, Raleigh, NC (US); Mark Behnke, Poolsville, MD (US); Asaf Allmardenov, North Bethesda, MD (US); Scott A. David, Hamilton, OH (US)

Assignees: Mycovia Pharmaceuticals, Inc., Durham, NC (US), The United States of America, as represented by the Secretary, Department of Health and Human Services, Rockville, MD (US)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 21 days. This patent is subject to a terminal disclaimer.

Appl. No.: 15/126,392
PCT Filed: Mar. 19, 2015
PCT No.: PCT/US2015/021484
PCT Pub. No.: WO2015/143166
PCT Pub. Date: Sep. 24, 2015

Prior Publication Data

Related U.S. Application Data
Provisional application No. 61/955,399, filed on Mar. 19, 2014.

Int. Cl.
C07D 213/26 (2006.01)
C07D 401/96 (2006.01)
C07D 213/60 (2006.01)
C07D 405/66 (2006.01)
C07D 213/30 (2006.01)
C07D 213/38 (2006.01)

U.S. Cl.
CPC C07D 213/50 (2013.01); C07D 213/56 (2013.01); C07D 213/30 (2013.01); C07D 401/96 (2013.01); C07D 405/66 (2013.01)

Field of Classification Search
None
See application file for complete search history.

U.S. PATENT DOCUMENTS

References Cited

FOREIGN PATENT DOCUMENTS

OTHER PUBLICATIONS

Primary Examiner: Karen Cheng

Attorney, Agent, or Firm — Brinks Gilson & Lione

ABSTRACT

The present invention relates to a process for preparing compound 1 that is useful as an antifungal agent. In particular, the invention seeks to provide a new methodology for preparing compound 1 and substituted derivatives thereof.

16 Claims, No Drawings
ANTIFUNGAL COMPOUND PROCESS

PATENT NUMBER: US 10,407,392
ISSUE DATE: September 10, 2019

INVENTORS:
William J. Hoekstra, Durham, NC
Christopher M. Yates, Raleigh, NC
Mark Behnke, Poolesville, MD
Asaf Alimardanov, North Bethesda, MD
Scott A. David, Huntsburg, OH
Douglas Franklin Fry, Euclid, OH

LEGAL ASSIGNEES:
Mycovia Pharmaceuticals, Inc., Durham, NC (US);
The United States of America, as represented by the Secretary, Department of Health and Human Services, Rockville, MD (US)

ABSTRACT:
Vulvovaginal candidiasis (VVC) and recurrent VVC (RVVC) remain major health problems for women. RVVC is a debilitating, chronic infectious condition that affects quality of life for nearly 138 million women worldwide each year and for which there is currently no approved treatment. The azole class of drugs targeting fungal cytochrome P45051 (CYP51) is widely used as a first-line treatment for fungal infections or as preemptive treatment. However, several side effects exist and are linked to inhibition of off-target human cytochromes P450 (CYPs). Additionally, the widespread use of azole antifungals, especially for prolonged treatment periods, has led to the emergence of azole-resistant strains of Candida albicans and other Candida species. Fungal CYP51 inhibitors with greater selectivity for fungal CYP51 (than off-target human CYPs) could overcome these limitations and therefore become a significant advancement in the field of fungal therapy.

VT-1161 was identified and developed to fill the growing need to develop new effective antifungal drugs to combat the increasing occurrence of Candida resistance, especially for the treatment of deep systemic infections. VT-1161 is a novel, oral therapy for RVVC that is designed to have greater selectivity, fewer side effects, and improved efficacy than current treatment options. The present invention provides novel methods of commercial scale manufacturing of VT-1161. The inventors have developed an optimized synthetic process for scaled-up production of VT-1161 at a low cost that will support treatment of patients in the developing world.

USPTO WEBSITE: https://go.usa.gov/xfFqk
United States Patent
Hoekstra et al.

ANTIFUNGAL COMPOUND PROCESS

Applicants: Mycovia Pharmaceuticals, Inc., Durham, NC (US); The United States of America as represented by the Secretary of Health and Human Services, Rockville, MD (US)

Assignee: Mycovia Pharmaceuticals, Inc., Durham, NC (US); The United States of America, as represented by the Secretary of Health and Human Services, Rockville, MD (US)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 9 days.

This patent is subject to a terminal disclaimer.

Appl. No.: 16/280,527
Filed: Feb. 28, 2019

Prior Publication Data

Related U.S. Application Data
Division of application No. 15/126,392, filed as application No. PCT/US2015/021484 on Mar. 19, 2015.

(Continued)

ABSTRACT
The present invention relates to a process for preparing compound 1 that is useful as an antifungal agent. In particular, the invention seeks to provide new methodology for preparing compound 1 and substituted derivatives thereof.

3 Claims, No Drawings
METHODS AND COMPOSITIONS FOR THE INHIBITION OF PIN1

PATENT NUMBER: US 10,413,548

INVENTORS:
Kun Ping Lu, Newton, MA
Matthew Brian Boxer, Rockville, MD
Mindy Irene Emily Davis, Rockville, MD
Rajan Pragani, Rockville, MD
Min Shen, Rockville, MD
Anton Momtchilov Simeonov, Rockville, MD
Shuo Wei, Chestnut Hill, MA
Xiao Zhen Zhou, Newton, MA

ISSUE DATE: September 17, 2019

LEGAL ASSIGNEES:
Beth Israel Deaconess Medical Center, Inc., Boston, MA (US)
The United States of America, as represented by the Secretary, Department of Health and Human Services, Bethesda, MD (US)

ABSTRACT:
Pin1, a peptidyl-prolyl cis/trans isomerase (PPIase), is emerging as an important regulator of signal transduction pathways. It is a potential target molecule for cancer, infectious disease, immune disorder, and Alzheimer’s disease (AD). Pin 1 belongs to the Parvulin family of peptidyl-prolyl cis-trans isomerases and is the only member that specifically isomerizes phospho-(Ser/Thr)-Pro ((Ser(P)/Thr(P))-Pro) motifs. It was shown that the unique proline isomerase Pin1 is pivotal for protecting against age-dependent neurodegeneration in Alzheimer’s disease (AD). Pin1 is modified in human AD brains, but little is known about its regulatory mechanisms and pathological significance of such Pin1 modification. It is also known that Pin1 is prevalently overexpressed in human cancers and that high Pin1 marker levels correlate with poor clinical outcome in many cancers. Significantly, Pin1 activates at least 19 oncogenes/growth enhancers and also inactivates at least 12 tumor suppressors/growth inhibitors. Thus, there is a need for Pin1 inhibitors for treating proliferative disorders and neurodegenerative disorders.

To identify the small molecule inhibitors of Pin1, a fluorescence polarization assay was developed and used for quantitative high-throughput screening. A total of 393,181 small molecule compounds from Molecular Libraries Probe Production Centers Network (MLPCN) library were screened in concentration-response manner. The invention features compositions and methods for inhibiting the Pin1 protein, and the treatment of disorders characterized by elevated Pin1 levels.

USPTO WEBSITE: https://go.usa.gov/xfFqR
United States Patent

Lu et al.

METHODS AND COMPOSITIONS FOR THE INHIBITION OF PIN1

Applicant: Beth Israel Deaconess Medical Center, Inc., Boston, MA (US), The United States of America, as represented by the Secretary, Department of Health and Human Services, Bethesda, MD (US)

Inventors: Kun Ping Lu, Newton, MA (US); Matthew Brian Boxer, Rockville, MD (US); Mirna Irene Emily Davis, Rockville, MD (US); Rajan Pragati, Rockville, MD (US); Min Shen, Rockville, MD (US); Anton Montehilov Simeonov, Rockville, MD (US); Shun Wei, Chestnut Hill, MA (US); Xiao Zhou Zhou, Newton, MA (US)

Assignee: Beth Israel Deaconess Medical Center, Inc., Boston, MA (US), The United States of America, as represented by the Secretary, Department of Health and Human Services, Bethesda, MD (US)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

Appl. No.: 15/645,683
Filed: Jul. 10, 2017

Prior Publication Data

Related U.S. Application Data
Continuation of application No. 14/406,401, filed as application No. PCT/US2013/044747 on Jan. 7, 2013, now Pat. No. 9,750,341.
 Provisional application No. 61/656,806, filed on Jan. 7, 2012.

Int. Cl.
A61K 31/5377 (2006.01)
A61K 31/474 (2006.01)
A61K 31/456 (2006.01)
A61K 31/454 (2006.01)
A61K 31/404 (2006.01)
A61K 31/405 (2006.01)
A61K 31/4245 (2013.01)
A61K 31/475 (2006.01)
A61K 31/4794 (2013.01)
A61K 31/496 (2013.01)

U.S. Cl.
CPC ... A61K 31/5577 (2013.01); A61K 31/185 (2013.01); A61K 31/441 (2013.01); A61K 31/357 (2013.01); A61K 31/363 (2013.01); A61K 31/381 (2013.01); A61K 31/382 (2013.01); A61K 31/402 (2013.01); A61K 31/484 (2013.01); A61K 31/495 (2013.01); A61K 31/405 (2013.01); A61K 31/427 (2013.01); A61K 31/428 (2013.01); A61K 31/429 (2013.01); A61K 31/479 (2013.01); A61K 45/06 (2013.01)

Field of Classification Search
CPC .. A61K 31/5577
See application file for complete search history.

References Cited
U.S. PATENT DOCUMENTS
4,688,705 A 7/1987 Mallis
5,459,920 A 10/1995 Madrich et al.
5,408,531 A 7/1995 Jarrett
5,855,467 A 9/1999 Hunter et al.
5,872,607 A 10/1999 Hunter et al.
6,402,173 B4 10/2002 Lu et al.
6,495,376 B4 12/2002 Lu et al.
6,754,068 B2 7/2004 Ryan et al.
7,125,955 B2 10/2006 Hunter et al.

FOREIGN PATENT DOCUMENTS

OTHER PUBLICATIONS
Wull et al. The EMBO Journal, vol. 20(6), pg. 1459-1472, 2001 * (Continued)

Primary Examiner Svetlana M Ivanova
(74) Attorney, Agent, or Firm — Clark & Fishling LLP

ABSTRACT
The invention features compositions and methods for inhibiting the Pin1 protein, and the treatment of disorders characterized by elevated Pin1 levels.

3 Claims, 15 Drawing Sheets
ANTIFUNGAL COMPOUND PROCESS

PATENT NUMBER: US 10,421,741

ISSUE DATE: September 24, 2019

INVENTORS:
William J. Hoekstra, Durham, NC
Christopher M. Yates, Raleigh, NC
Mark Behnke, Poolesville, MD
Asaf Alimardanov, North Bethesda, MD
Scott A. David, Huntsburg, OH
Douglas Franklin Fry, Euclid, OH

LEGAL ASSIGNEES:
Mycovia Pharmaceuticals, Inc., Durham, NC (US);
The United States of America, as represented by the Secretary, Department of Health and Human Services, Rockville, MD (US)

ABSTRACT:
Cryptococcal meningitis (CM) results from fungal infections that are particularly prevalent in immune-compromised patients. CM is the second leading cause of HIV-related deaths in sub-Saharan Africa, with estimates of 500,000 deaths per year as current therapies are only marginally effective. CM results from infection by the encapsulated yeasts Cryptococcus neoformans and Cryptococcus gattii and is observed predominately in immune-compromised individuals. The most common drug treatment for CM in this patient population is high-dose fluconazole monotherapy, however, it achieves only a 40 percent survival rate after 10 weeks of treatment. A more potent anti-fungal drug that can be given orally once a day would likely provide a significant improvement in survival for this neglected population. VT-1129 is a novel fungus-specific Cyp51 inhibitor with potent in vitro activity against Cryptococcus species. This agent acts by inhibiting the fungal cytochrome P450 enzyme Cyp51 (lanosterol 14-α-demethylase), thus inhibiting the biosynthesis of ergosterol in a highly selective manner compared to that of clinically availableazole antifungals.

The present invention provides novel methods of commercial scale manufacturing of VT-1129. The inventors have developed an optimized synthetic process for scaled-up production of drug at a low cost that will support treatment of patients in the developing world.

USPTO WEBSITE: https://go.usa.gov/xfFq7
(12) United States Patent

Hoekstra et al.

(10) Patent No.: US 10,421,741 B2
(45) Date of Patent: Sep. 24, 2019

(54) ANTIFUNGAL COMPOUND PROCESS

(56) References Cited

U.S. PATENT DOCUMENTS

4,426,531 A 1/1984 Bienen et al.
8,256,822 B2 8/2012 Hoekstra et al.
8,796,003 B2 8/2014 Hoekstra et al.
8,809,238 B2 8/2014 Hoekstra et al.
8,881,779 B2 1/2012 Hoekstra et al.
8,891,131 B2 1/2014 Hoekstra et al.
9,334,734 B2 1/2017 Hoekstra et al.
9,523,791 B2 12/2015 Hoekstra et al.
9,538,237 A 4/2016 Hoekstra et al.
9,556,415 B2 1/2017 Hoekstra et al.
9,562,483 B2 5/2017 Hoekstra et al.
9,802,942 B2 10/2017 Hoekstra et al.
9,840,492 B2 12/2017 Hoekstra et al.

(21) Appl. No.: 16/030,228

(22) Filed: Jul. 9, 2018

(65) Prior Publication Data

Related U.S. Application Data

(62) Division of application No. 15/126,420, filed as application No. PCT/US2015/021511 on Mar. 19, 2015, now Pat. No. 10,017,490.

(60) Provisional Application No. 61/955,650, filed on Mar. 19, 2014.

(51) Int. Cl.

C07D 401/06 (2006.01)
C07D 405/06 (2006.01)
C07D 214/30 (2006.01)
C07D 213/38 (2006.01)
C07D 213/56 (2006.01)
C07D 213/50 (2006.01)

(57) ABSTRACT

The present invention relates to a process for preparing compound 1 that is useful as an antifungal agent. In particular, the invention seeks to provide new methodology for preparing compound 1 and substituted derivatives thereof.

2 Claims, No Drawings
ANTIFUNGAL COMPOUND PROCESS

PATENT NUMBER: US 10,428,025

INVENTORS:
William J. Hoekstra, Durham, NC
Christopher M. Yates, Raleigh, NC
Mark Behnke, Poolesville, MD
Asaf Alimardanov, North Bethesda, MD
Scott A. David, Huntsburg, OH
Douglas Franklin Fry, Euclid, OH

ISSUE DATE: October 1, 2019

LEGAL ASSIGNEES:
Mycovia Pharmaceuticals, Inc., Durham, NC (US);
The United States of America, as represented by the Secretary, Department of Health and Human Services, Rockville, MD (US)

ABSTRACT:
Vulvovaginal candidiasis (VVC) and recurrent VVC (RVVC) remain major health problems for women. RVVC is a debilitating, chronic infectious condition that affects quality of life for nearly 138 million women worldwide each year and for which there is currently no approved treatment. The azole class of drugs targeting fungal cytochrome P45051 (CYP51) is widely used as a first-line treatment for fungal infections or as preemptive treatment. However, several side effects exist and are linked to inhibition of off-target human cytochromes P450 (CYPs). Additionally, the widespread use of azole antifungals, especially for prolonged treatment periods, has led to the emergence of azole-resistant strains of Candida albicans and other Candida species. Fungal CYP51 inhibitors with greater selectivity for fungal CYP51 (than off-target human CYPs) could overcome these limitations and therefore become a significant advancement in the field of fungal therapy.

VT-1161 was identified and developed to fill the growing need to develop new effective antifungal drugs to combat the increasing occurrence of Candida resistance, especially for the treatment of deep systemic infections. VT-1161 is a novel, oral therapy for RVVC that is designed to have greater selectivity, fewer side effects, and improved efficacy than current treatment options. The present invention provides novel methods of commercial scale manufacturing of VT-1161. The inventors have developed an optimized synthetic process for scaled-up production of VT-1161 at a low cost that will support treatment of patients in the developing world.

USPTO WEBSITE: https://go.usa.gov/xfFaX
(12) United States Patent
Hookstra et al.

(45) Date of Patent: *Oct. 1, 2019

(54) ANTIFUNGAL COMPOUND PROCESS

(71) Applicants: Mycovia Pharmaceuticals, Inc., Durham, NC (US); The U.S.A., as represented by the Secretary, Department of Health and Human Services, Rockville, MD (US)

(72) Inventors: William J. Hookstra, Durham, NC (US); Christopher M. Yates, Raleigh, NC (US); Mark Behmke, Poolesville, MD (US); Asaf Altmanianov, North Bethesda, MD (US); Scott A. David, Pipersville, PA (US); Douglas Franklin Fry, Luckfield, ON (US)

(73) Assignee: Mycovia Pharmaceuticals, Inc., Durham, NC (US); The United States of America, as represented by the Secretary, Department of Health and Human Services, Rockville, MD (US)

(9) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days. This patent is subject to a terminal disclaimer.

(21) Appl. No.: 16/280,534

(22) Filed: Feb. 28, 2019

(65) Prior Publication Data

Related U.S. Application Data

(52) Division of application No. 15/128,392, filed as application No. PCT/US2015/024484 on Mar. 19, 2015.

(60) Provisional application No. 61/955,599, filed on Mar. 19, 2014.

(51) Int. Cl.
C07D 213/30 (2006.01)
C07D 213/50 (2006.01)
C07D 405/06 (2006.01)
C07D 405/28 (2006.01)
C07D 405/46 (2006.01)

(52) U.S. Cl.
CPC C07D 213/30 (2013.01); C07D 213/30 (2013.01); C07D 213/38 (2013.01); C07D 405/06 (2013.01); C07D 405/46 (2013.01)

(58) Field of Classification Search
CPC C07D 213/30; C07D 213/35

See application file for complete search history.

(33) References Cited
U.S. PATENT DOCUMENTS
4,436,531 A 1/1984 Hison et al.

(34) FOREIGN PATENT DOCUMENTS

(39) CITED PUBLICATIONS

Primary Examiner — Karen Cheng
(74) Attorney, Agent, or Firm — Brinks Gilson & Louie

(57) ABSTRACT

The present invention relates to a process for preparing compound 1 that is useful as an antifungal agent. In particular, the invention seeks to provide a new methodology for preparing compound 1 and substituted derivatives thereof.

3 Claims, No Drawings
SMALL-MOLECULE INHIBITORS OF HUMAN GALACTOKINASE FOR THE TREATMENT OF GALACTOSEMIA AND CANCERS

PATENT NUMBER: US 10,471,061
ISSUE DATE: November 12, 2019

INVENTORS:
Matthew B. Boxer, Frederick, MD
Martin J. Walsh, Carmel, IN
Li Liu, Germantown, MD
Cordelie D. Tanega, Rockville, MD
Min Shen, Boyds, MD
Kent Lai, Salt Lake City, UT
Manshu Tang, Salt Lake City, UT
Douglas S. Auld, Beverly, MA

LEGAL ASSIGNEES:
The United States of America, as represented by the Secretary, Department of Health and Human Services, Bethesda, MD (US); University of Utah Research Foundation, Salt Lake City, UT (US)

ABSTRACT:
Lactose, found in dairy products and other foods, is comprised of two simple sugars, glucose and galactose. In galactosemia, where galactose is not properly metabolized, build-up of toxic compounds, such as galactose-1-phosphate, can lead to liver disease, renal failure, cataracts, brain damage, and even death if this disorder is left untreated. Currently, the only treatment for galactosemia is elimination of lactose and galactose from the diet, but in some cases this is not sufficient to avoid long-term complications from the disorder.

This technology describes selective small-molecule inhibitors of human galactokinase, which inhibit the first step in galactose metabolism. These compounds could be used to treat galactosemia by eliminating the build-up of toxic metabolites in brain, liver, and other tissues, and could form the basis for the first effective treatment for this disorder. These compounds are also promising candidates for the treatment of certain cancers, such as PTEN/AKT mis-regulated cancers.

USPTO WEBSITE: https://go.usa.gov/xfFas
GALACTOKINASE INHIBITORS FOR THE TREATMENT AND PREVENTION OF ASSOCIATED DISEASES AND DISORDERS

Applicant: The United States of America, as represented by the Secretary, Department of Health and Human Services, Bethesda, MD (US); UNIVERSITY OF UTAH RESEARCH FOUNDATION, Salt Lake City, UT (US)

Inventors: Matthew B. Boxer, Frederick, MD (US); Martin J. Walsh, Carmel, IN (US); Li Lin, Gaithersburg, MD (US); Cordelle D. Tang, Rockville, MD (US); Min Shen, Boyds, MD (US); Kent Lai, Salt Lake City, UT (US); Manshu Tang, Salt Lake City, UT (US); Douglas S. Audl, Beverly, MA (US)

Assignee: The United States of America, as represented by the Secretary, Department of Health and Human Services, Bethesda, MD (US); UNIVERSITY OF UTAH RESEARCH FOUNDATION, Salt Lake City, UT (US)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

This patent is subject to a terminal disclaimer.

Appl. No.: 16/152,735
Filed: Oct. 5, 2018
Prior Publication Data

Related U.S. Application Data
Continuation of application No. 15/234,934, filed on Aug. 11, 2016, now abandoned, which is a continuation of application No. 14/346,400, filed as application No. PCT/US2014/053021 on Sep. 23, 2014, now Pat. No. 9,447,087.

Int. Cl.
C07D 402/12 (2006.01)
A61K 31/517 (2006.01)
A61K 31/506 (2006.01)
C07D 413/14 (2006.01)
C07D 413/12 (2006.01)
C07D 495/00 (2006.01)
C07D 495/10 (2006.01)
C07D 495/14 (2006.01)
C07D 495/107 (2006.01)
A61K 31/527 (2006.01)

U.S. Cl.
CPC: A61K 31/517 (2013.01); A61K 31/506 (2013.01); A61K 31/527 (2013.01); C07D 402/12 (2013.01); C07D 413/12 (2013.01); C07D 495/107 (2013.01); C07D 495/14 (2013.01); C07D 495/10 (2013.01); C07D 495/10 (2013.01)

Field of Classification Search
USIN: 544331; 544275
See application file for complete search history.

References Cited
U.S. PATENT DOCUMENTS
9,447,087 * 9/2016 Boxer (C07D 495/12)
FOREIGN PATENT DOCUMENTS
WO WO 2009/023773 A2 2/2010

OTHER PUBLICATIONS
Chemical Book Ltd. (Registry, STN InfoChemicals) (Apr. 2004). Database Registry Chemical Accession No. 6697 1,8-03-8, "S-[11]-Quinolinol-2-(2-benzothiazolylamino)-4,6,7-trihydro-4-phenyl-" (Apr. 1, 2004).
(Continued)

Primary Examiner Deepak R Rao
Attorney, Agent, or Firm Michael Boet & Friedrich LLP

Disclosed are inhibitors of human galactokinase of formula (I) that are useful in treating or preventing a galactokinase mediated disease or disorder, e.g., galactosemia. Also disclosed are a composition comprising a pharmaceutically acceptable carrier and at least one inhibitor of the invention, and a method of treating or preventing such disease or disorder in a mammal. Formula (I).

ABSTRACT

20 Claims, No Drawings
BICYCLIC BET BROMODOMAIN INHIBITORS AND USES THEREOF

PATENT NUMBER: US 10,508,106

INVENTORS:
Jeffrey William Strovel, Laurel, MA
Makoto Yoshioka, Gaithersburg, MD
David J. Maloney, Point of Rocks, MD
Shyh Ming Yang, Doylestown, PA
Ajit Jadhav, Chantilly, VA
Daniel Jason Urban, Poolesville, MD

ISSUE DATE: December 17, 2019

LEGAL ASSIGNEES:
ConverGene LLC, Cambridge, MD (US);
The United States of America, as represented by the Secretary, Department of Health and Human Services, Bethesda, MD (US)

ABSTRACT:
The proteins containing bromodomain(s) are critical in the epigenetic regulation of gene transcription, and epigenetic dysregulation can lead to cancers and inflammatory diseases. Among identified bromodomains, the bromodomain and extra-terminal domain (BET) family, consisting of four members BRD2, BRD3, BRD4, and BRDT, have emerged as a potential therapeutic target. Thus, inhibiting the bromodomains of BET proteins can provide an effective mode of treatment for various diseases, including various cancers.

The present invention relates to compounds that bind to and otherwise modulate the activity of bromodomain-containing proteins, to processes for preparing these compounds, to pharmaceutical compositions containing these compounds, and to methods of using these compounds for treating a wide variety of conditions and disorders. Specifically, this invention relates to (S)-1-(4-(6-(3,5-dimethylisoxazol-4-yl)-4-(3-phenylmorpholino)quinazolin-2-yl)1H-pyrazol-1-yl)-2-methylpropan-2-ol and pharmaceutical compositions containing the same for treatment of variety of indications including cancer.

USPTO WEBSITE: https://go.usa.gov/xfFat
BICYCLIC BET BROMODOMAIN INHIBITORS AND USES THEREOF

Applicant: ConverGene LLC, Cambridge, MD (US); The United States of America, as represented by the Secretary, Department of Health and Human Services, Bethesda, MD (US)

Inventors: Jeffrey William Strovel, Laurel, MA (US); Makoto Yoshioka, Gahnsburg, MD (US); David J. Maloney, Point of Rocks, MD (US); Shyh Ming Yang, Downingtown, PA (US); Ajit Jadhav, Chantilly, VA (US); Daniel Jason Urban, Poolesville, MD (US)

Assignee: ConverGene LLC, Cambridge, MD (US); The United States of America, as represented by the Secretary, Department of Health and Human Services, Bethesda, MD (US)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. § 154(b) by 9 days.

Appl. No.: 15/779,333
PCT Filed: Nov. 23, 2016
PCT No.: PCT/US2016/063485
PCT Date: May 25, 2018
PCT Pub. No.: WO2017/091661
PCT Pub. Date: Jun. 1, 2017

Prior Publication Data
US 2018/0345344 A1 Oct. 25, 2018

Related U.S. Application Data
Provisional application No. 62/259,894, filed on Nov. 25, 2015.

Int. Cl.
C07D 413/04 (2006.01)
C07D 413/14 (2006.01)
C07D 401/04 (2006.01)
C07D 239/84 (2006.07)
C07D 417/01 (2006.01)
C07D 471/10 (2006.07)
A61P 30/00 (2006.01)
C07D 239/95 (2006.01)
C07D 401/14 (2006.01)
C07D 401/04 (2006.01)
C07D 417/14 (2006.07)

U.S. Cl.
CPC C07D 413/04 (2013.01); A61P 30/00 (2013.01); C07D 239/71 (2013.01); C07D 239/75 (2013.01); C07D 401/04 (2013.01); C07D 417/14 (2013.01)

Field of Classification Search
CPC C07D 239/48; A61K 45/06
See application file for complete search history.

References Cited
U.S. PATENT DOCUMENTS
2,555,322 A 8/2973 Wedge et al.
8,567,968 B2 * 1/2013 Boudiot C07D 417/01
544,126
2017/02/26/06 A1 * 8/2017 Shoshanah C07D 239/28
FOREIGN PATENT DOCUMENTS
EP 6393926 10/1990
EP 1409930 5/2005
EP 7221831 8/2010
EP 1011266 10/2013
EP 2850936 10/2013
EP 1863988 7/2015
EP 3056207 8/2016

Primary Examiner — Rei Tsang Shiao
Attorney, Agent, or Firm — Fish & Richardson P.C.

ABSTRACT
The present invention relates to compounds that bind to and otherwise modulate the activity of bromodomain-containing proteins, to processes for preparing these compounds, to pharmaceutical compositions containing these compounds, and to methods of using these compounds for treating a wide variety of conditions and disorders.

n
2 Claims, No Drawings
Fibrodysplasia ossificans progressiva (FOP) is a rare, fatal disease marked by inappropriate growth BMP signals have been known for decades to play essential roles in normal embryonic development. More recently, it has been recognized that BMP signals also play important roles in adults. In fact, excessive BMP signaling has been shown to contribute to the pathophysiology of two distinct diseases. The first of these, FOP, is caused by activating mutations in a gene encoding one of the type I BMP receptors. There are no available treatments for FOP patients.

The present invention provides small-molecule inhibitors of BMP signaling and compositions and methods for inhibiting BMP signaling. Specifically, the present invention provides bicyclic heteroaryl inhibitors of BMP signaling and compositions and methods for inhibiting BMP signaling. These compounds and compositions may be used to modulate cell growth, differentiation, proliferation, and apoptosis, and thus may be useful for treating diseases or conditions associated with BMP signaling, including inflammation, cardiovascular disease, hematological disease, cancer, and bone disorders. These compounds and compositions may also be used to reduce circulating levels of ApoB-100 or LDL and treat or prevent acquired or congenital hypercholesterolemia or hyperlipoproteinemia.
United States Patent
Lee et al.

Patent No.: US 10,513,521 B2
Date of Patent: Dec. 24, 2019

Compositions and Methods for Inhibiting BMP

Applicants: The Brigham and Women's Hospital, Inc., Boston, MA (US); The United States of America, as Represented by the Secretary, Department of Health and Human Services, National Institutes of Health, Bethesda, MD (US); University of Houston System, Houston, TX (US)

Inventors: Arthur Lee, San Jose, CA (US); John C. McKeown, Boyds, MD (US); Paremsa R. Patel, Rockville, MD (US); Paul B. Yu, Boston, MA (US); Agustin I. Molledas, Somerville, MA (US); Philip E. Sanderson, Bethesda, MD (US); Gregory D. Cuny, Houston, TX (US); Wei Zhang, Potomac, MD (US); Xini Huang, Potomac, MD (US)

Assignee: The Brigham and Women's Hospital, Inc., Boston, MA (US); University of Houston System, Houston, TX (US); The United States of America, as Represented by the Secretary, Department of Health and Human Services, Bethesda, MD (US)

Note: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(a) by 0 days.

Appl. No.: 15/326,262
PCT Filed: Jul. 14, 2015
PCT No.: PCT/US2015/040366
PCT Pub. Date: Jan. 13, 2017
PCT Pub. No.: WO2016/011019
PCT Pub. Date: Jan. 21, 2016

References Cited
U.S. PATENT DOCUMENTS
6,245,730 B1 6/2001 Bilecen et al.

FOREIGN PATENT DOCUMENTS
RU 99101118 A 10/2001
RU 2283532 C2 10/2006

CITATIONAL PUBLICATIONS

Primary Examiner Jeffrey D. Murray
Attorney, Agent, or Firm: David P. Halverson; Foley Hoog, LLP

ABSTRACT
The present invention provides bicyclic heterosubstituted inhibitors of BMP signaling and compositions and methods for inhibiting BMP signaling. Exemplary compounds include those of Formula I:

These compounds and compositions may be used to modulate cell growth, differentiation, proliferation, and apoptosis, and thus may be useful for treating diseases or conditions associated with BMP signaling, including inflammation, cardiovascular disease, hematological disease, cancer, and bone disorders, as well as for modulating cellular differentiation and/or proliferation. These compounds and compositions may also be used to reduce circulating levels of ApoA-1 or HDL and treat or prevent acquired or congenital hypercholesterolemia or hyperlipoproteinemia; diseases, disorders, or syndromes associated with defects in lipid absorption or metabolism; or diseases, disorders, or syndromes caused by hyperlipidemia.
EMETINE COMPOUNDS FOR TREATMENT AND PREVENTION OF FLAVIVIRUS INFECTION

ABSTRACT

PATENT NUMBER: US 10,555,942

INVENTORS:
Hengli Tang, Tallahassee, FL
Emily M. Lee, Tallahassee, FL
Anil Mathew Tharappel, Tallahassee, FL
Hongjun Song, Baltimore, MD
Guo-Li Ming, Baltimore, MD
Wei Zheng, Rockville, MD
Miao Xu, Rockville, MD
Shu Yang, Rockville, MD
Ruili Huang, Rockville, MD
Wenwei Huang, Rockville, MD
Khalida Shamim, Gaithersburg, MD
Hao Li, Rockville, MD

ISSUE DATE: February 11, 2020

LEGAL ASSIGNEES:
Florida State University Research Foundation, Inc., Tallahassee, FL (US);
The Johns Hopkins University, Baltimore, MD (US);
The United States of America, as represented by the Secretary, Department of Health and Human Services, Bethesda, MD (US)

ABSTRACT:

Zika virus (ZIKV) and Ebola virus (EBOV) pose serious and continued threats to global public health, with no effective therapies. The present invention concerns the use of emetine compounds for the treatment or prevention of Flavivirus infections, such as Zika virus infections. The inventors showed that emetine, an anti-protozoal agent, potently inhibits ZIKV and EBOV infections at low nanomolar concentrations, both in-vitro and in-vivo. Two mechanisms of action for emetine are identified: the inhibition of ZIKV NS5 polymerase activity and disruption of lysosomal function. Emetine also inhibits EBOV entry. Cephaeline, a desmethyl analog of emetine, may be better tolerated in patients than emetine and exhibits a similar efficacy against both ZIKV and EBOV infections. Hence, emetine and cephaeline offer pharmaceutical therapies against both ZIKV and EBOV infection.

Aspects of the invention include methods for treating or preventing Flavivirus virus infection, such as Zika virus infection; pharmaceutical compositions; packaged dosage formulations; and kits for treating or preventing Flavivirus infections, such as Zika virus infections.

USPTO WEBSITE: https://go.usa.gov/xfFYm
EMETINE COMPOUNDS FOR TREATMENT AND PREVENTION OF FLAVIVIRUS INFECTION

Applicants: FLORIDA STATE UNIVERSITY RESEARCH FOUNDATION, INC., Tallahassee, FL (US); THE JOHNS HOPKINS UNIVERSITY, Baltimore, MD (US); The United States of America, as represented by the Secretary, Department of Health and Human Services, Bethesda, MD (US)

Inventors: Hengli Tang, Tallahassee, FL (US); Emily M. Lee, Tallahassee, FL (US); Anil Mathew Tharappel, Tallahassee, FL (US); Hongjun Song, Batallione, MD (US); Guo-Li Ming, Baitalione, MD (US); Wei Zheng, Rockville, MD (US); Miao Xu, Rockville, MD (US); Shu Yang, Rockville, MD (US); Haili Huang, Rockville, MD (US); Weinee Huang, Rockville, MD (US); Khadidia Shumun, Gaithersburg, MD (US); Hao Li, Rockville, MD (US)

Assignee: Florida State University Research Foundation, Inc., Tallahassee, FL (US); The Johns Hopkins University, Baltimore, MD (US); The United States of America, as represented by the Secretary, Department of Health and Human Services, Bethesda, MD (US)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(a) by 60 days.

Filed: Oct. 10, 2018

Prior Publication Data
US 2019/0198318 A1 Apr. 11, 2019

Related U.S. Application Data
05/254,104, 05/254,107, filed Oct. 9, 2006 (20060109); 05/254,106, filed Oct. 9, 2006 (20060109); 05/254,105, filed Oct. 9, 2006 (20060109)

Abstract

The present invention concerns the use of emetine compounds for the treatment or prevention of flavivirus infections, such as Zika virus infections. Aspects of the invention include methods for treating or preventing flavivirus virus infection, such as Zika virus infection, by administering an emetine compound such as emetine or ephedrine, or a combination of two or more emetine compounds, to a subject in need thereof; methods for inhibiting flavivirus infections such as Zika virus infections in cells in vitro or in vivo; pharmaceutical compositions; packaged dosage formulations; and kits for treating or preventing flavivirus infections, such as Zika virus infections.

15 Claims, 7 Drawing Sheets
AMIDO COMPOUNDS AS RORγT MODULATORS AND USES THEREOF

PATENT NUMBER: US 10,561,666

INVENTORS:
Dan Littman, New York, NY
Jun R. Huh, Newton, MA
Ruili Huang, Rockville, MD
Wenwei Huang, Rockville, MD
Erika Elaine Englund, Washington, DC

ISSUE DATE: February 18, 2020

LEGAL ASSIGNNEES:
The United States of America, as represented by the Secretary, Department of Health and Human Services, Bethesda, MD (US);
New York University, New York, NY (US)

ABSTRACT:
The retinoic acid receptor-related orphan nuclear receptor Gamma (RORγ) is a member of the nuclear hormone receptor superfamily. A single gene encodes for two isoforms, RORγ1 and RORγt, which differ only in their amino terminal domains. RORγ is widely expressed in many tissues, including liver, adipose tissue, skeletal muscle, and kidney. RORγt is expressed in CD4+/CD8+ thymocytes, lymphoid tissue inducer cells, and innate lymphoid cells. RORγt plays a pivotal role in the differentiation of TH17 cells and inhibiting RORγt activity presents a potential means to treat TH17-related autoimmune diseases.

This invention relates to the identification of a series of diphenylpropanamides as novel and selective RORγt antagonists. The amino compounds of this invention are useful to treat diseases or conditions related to RORγt activity. In particular, the compounds may be used to diminish inflammation due to an inflammatory disease or autoimmune disorder.

USPTO WEBSITE: https://go.usa.gov/xfFYp
(54) AMIDIO COMPOUNDS AS ROR1 MODULATORS AND USES THEREOF

(71) Applicant: New York University, New York, NY (US); The United States of America, as Represented by the Secretary, Department of Health and Human Services, Bethesda, MD (US);

(72) Inventors: Dan Littman, New York, NY (US);
Jun R. Itoh, Newton, MA (US);
Ruili Huang, Rockville, MD (US);
Wenwei Huang, Rockville, MD (US);
Erika Elaine Englund, Washington, DC (US);

(73) Assignee: THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES, Bethesda, MD (US);
NEW YORK UNIVERSITY, New York, NY (US);

(4) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

This patent is subject to a terminal disclaimer.

(21) Appl. No.: 13/350,299
(22) Filed: Nov. 14, 2011

Prior Publication Data

Related U.S. Application Data
(63) Continuation of application No. 13/634,073, filed as application No. PVCUS2011-000459 on Mar. 11, 2011, now Patent No. 9,492,429.
(Continued)

(51) Int. Cl.
A61K 31/55 (2006.01)
A61K 31/12 (2006.01)
(Continued)

(52) U.S. Cl.
C07D 31/75 (2013.01); C07D 31/760 (2013.01); C07D 401/01 (2013.01); C07D 403/01 (2013.01);
(Continued)

(58) Field of Classification Search
CPC A61K 31/55; A61K 31/12; A61K 31/33;
A61K 31/4025; A61K 31/404; A61K 31/4453; A61K 31/445; A61K 31/4525;
A61K 31/454; A61K 31/455; A61K 31/4709; A61K 31/406; A61K 31/535;
A61K 31/537
Sec application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
4,603,145 A 7/1986 Devreese et al.
(Continued)

FOREIGN PATENT DOCUMENTS
EP 231,710 B1 5/2010
(Continued)

OTHER PUBLICATIONS
(Continued)

Primary Examiner Rebecca I. Anderson
(74) Attorney, Agent, or Firm — Hoffman & Barron, LLP

ABSTRACT
Amido compounds are disclosed that have a formula represented by the following:

and wherein n1, R1, R2, R3, R4, R5, and R6 are as described herein. The compounds may be prepared as pharmaceutical compositions, and may be used for the prevention and treatment of a variety of conditions in mammals including humans, including by way of non-limiting example, inflammatory conditions, autoimmune disorders, cancer, and graft-versus-host disease.

8 Claims, 11 Drawing Sheets
Specification includes a Sequence Sheet.
MUTANT IDH1 INHIBITORS USEFUL FOR TREATING CANCER

PATENT NUMBER: 10,703,746
ISSUE DATE: July 7, 2020
INVENTORS: Matthew Brian Boxer, New Market, MD
Jason Matthew Rohde, Poolesville, MD
Rajan Pragani, Gaithersburg, MD
Li Liu, Germantown, MD
Mindy Irene Emily Davis, Rockville, MD
Kyle Ryan Brimacombe, Bethesda, MD
Min Shen, Boyds, MD
Anton Simeonov, Bethesda, MD
Surendra Karavadhi, Gaithersburg, MD
Daniel Jason Urban, Rockville, MD
Ajit Jadhav, Chantilly, VA
Xiaodong Wang, Chapel Hill, NC
Andrew Louis McIver, Durham, NC

LEGAL ASSIGNEES: The United States of America, as represented by the Secretary, Department of Health and Human Services, Bethesda, MD (US);
The University Of North Carolina At Chapel Hill, Chapel Hill, NC (US)

ABSTRACT:
Isocitrate dehydrogenase 1 (IDH1) is an enzyme whose normal function is to convert isocitrate to α-ketoglutarate. Mutated forms of this enzyme (mIDH1) are common in a variety of cancers, including acute myeloid leukemia (AML), glioma, cholangiocarcinoma, chondrosarcoma, and melanoma. The IDH1 mutation at position 132 and similar IDH1 mutations result in the enzyme gaining the ability to catalyze the NADPH-dependent reduction of the wild type enzyme’s product, α-ketoglutarate to R-2-hydroxyglutarate (2-HG). 2-HG is an oncometabolite, and its elevated levels have been shown to lead to de-differentiation of cells. Mutant IDH1 is an attractive target for anti-cancer therapeutics as inhibition reduces levels of 2-HG. It is expected that lower 2-HG levels will result in fewer undifferentiated cancer cells. Furthermore, inhibition of mutant IDH1 is expected to have little effect on non-cancerous cells, as these cells do not express the IDH1 mutation resulting in lower toxicity than typical cytotoxic anticancer agents.

The inventors of this innovation have discovered a series of novel compounds that potently and selectively inhibit mIDH1. These compounds reduce 2-HG levels in cell lines in vitro as well as in human cancer cells grown as xenografts in mice. These compounds possess very favorable in vivo rodent pharmacokinetics and bioavailability and are well tolerated in rodents, even when dosed at high levels. These compounds can potentially be used as treatments of cancer (AML or other solid tumors).

USPTO WEBSITE: https://go.usa.gov/xfSQb
United States Patent
Boxer et al.

MUTANT IDH1 INHIBITORS USEFUL FOR TREATING CANCER

Applicants: THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICE, Bethesda, MD (US); THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL, Chapel Hill, NC (US)

Inventors: Matthew Brian Boxer, New Market, MD (US); Jason Matthew Rohde, Poolesville, MD (US); Rajan Pragani, Gaithersburg, MD (US); Li Liu, Germantown, MD (US); Mindy Irene Emily Davis, Rockville, MD (US); Kyle Ryan Brinacombe, Bethesda, MD (US); Min Shen, Boys, MD (US); Anton Simeonev, Bethesda, MD (US); Surendra Karavadli, Gaithersburg, MD (US); Daniel Jason Urban, Rockville, MD (US); Ajit Jadhav, Chantilly, VA (US); Xiaodong Wang, Chapel Hill, NC (US); Andrew Louis Melver, Durham, NC (US)

Assignees: THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES, Bethesda, MD (US); THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL, Chapel Hill, NC (US)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 134 days.

Appl. No.: 15/538,570
PCT Filed: Dec. 22, 2015
PCT No.: PCT/US2015/067406
§ 371 (c)(1), (2) Date: Jun. 21, 2017
PCT Pub. No.: WO2016/106331
PCT Pub. Date: Jun. 30, 2016

Prior Publication Data

Related U.S. Application Data
Provisional application No. 62/095,322, filed on Dec. 22, 2014.

Int. Cl.
C07D 417/04 (2006.01)
A61K 31/4709 (2006.01)

U.S. Cl.
CPC C07D 417/04 (2013.01); A61K 31/435 (2013.01); A61K 31/437 (2013.01);

Field of Classification Search
None
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS
514/266-A

FOREIGN PATENT DOCUMENTS
WO 2004008980 A1 7/2004

OTHER PUBLICATIONS

Primary Examiner — Po-Chih Chen
Attorney, Agent, or Firm — Cantor Colburn LLP

ABSTRACT
Compounds of Formula I and Formula II and the pharmaceutically acceptable salts thereof are disclosed. The variables A, B, Y, Z, X1, X2, R1-R4 and R13-R18 are disclosed herein. The compounds are useful for treating cancer disorders, especially those involving mutant IDH1 enzymes. Pharmaceutical compositions containing compounds of Formula I or Formula II and methods of treatment comprising administering compounds of Formula I and Formula II are also disclosed.

Formula I

Formula II
<table>
<thead>
<tr>
<th>PATENT NUMBER</th>
<th>ISSUE DATE</th>
<th>TITLE</th>
<th>NCATS INVENTORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>10,266,488 B2</td>
<td>4/23/2019</td>
<td>4-((2-hydroxy-3-methoxybenzyl)amino) benzenesulfonamide derivatives as potent and selective inhibitors of 12-lipoxygenase</td>
<td>Anton Simeonov; Diane K. Luci; Adam Yasgar</td>
</tr>
<tr>
<td>10,413,548 B2</td>
<td>9/17/2019</td>
<td>Methods and compositions for the inhibition of Pin1</td>
<td>Anton Simeonov, Min Shen</td>
</tr>
<tr>
<td>10,392,646 B2</td>
<td>8/27/2019</td>
<td>Device and methods of using device for detection of aminoacidopathies</td>
<td>Anton Simeonov; Juan Marugan</td>
</tr>
<tr>
<td>10,287,279 B2</td>
<td>5/14/2019</td>
<td>Inhibitors of human 12/15-lipoxygenase</td>
<td>Anton Simeonov; Ganesha Rai Bantukallu</td>
</tr>
<tr>
<td>10,266,488 B2</td>
<td>4/23/2019</td>
<td>4-((2-hydroxy-3-methoxybenzyl)amino) benzenesulfonamide derivatives as potent and selective inhibitors of 12-lipoxygenase</td>
<td>Anton Simeonov; Diane K. Luci; Adam Yasgar</td>
</tr>
<tr>
<td>10,351,532 B2</td>
<td>7/16/2019</td>
<td>Small molecule inhibitors of lactate dehydrogenase and methods of use thereof</td>
<td>Anton Simeonov; Shyh Ming Yang, Xin Hu, Ganesh Rai Bantukallu</td>
</tr>
<tr>
<td>10,428,025 B2</td>
<td>10/1/2019</td>
<td>Antifungal compound process</td>
<td>Asaf Alimardanov</td>
</tr>
<tr>
<td>10,125,112 B2</td>
<td>11/13/2018</td>
<td>Modulators of the relaxin receptor 1</td>
<td>Marc Ferrer; Juan Marugan; Catherine Chen; Noel Southall; Wei Zheng</td>
</tr>
<tr>
<td>10,287,279 B2</td>
<td>5/14/2019</td>
<td>Inhibitors of human 12/15-lipoxygenase</td>
<td>Anton Simeonov; Ganesha Rai Bantukallu</td>
</tr>
<tr>
<td>10,266,488 B2</td>
<td>4/23/2019</td>
<td>4-((2-hydroxy-3-methoxybenzyl)amino) benzenesulfonamide derivatives as potent and selective inhibitors of 12-lipoxygenase</td>
<td>Diane Luci; Anton Simeonov; Adam Yasgar</td>
</tr>
<tr>
<td>10,508,106 B2</td>
<td>12/17/2019</td>
<td>Bicyclic BET bromodomain inhibitors and uses thereof</td>
<td>Shyh Ming Yang</td>
</tr>
<tr>
<td>10,266,488 B2</td>
<td>4/23/2019</td>
<td>4-((2-hydroxy-3-methoxybenzyl)amino) benzenesulfonamide derivatives as potent and selective inhibitors of 12-lipoxygenase</td>
<td>Anton Simeonov; Diane K. Luci; Adam Yasgar</td>
</tr>
</tbody>
</table>

INDEX OF PATENTS AND INVENTORS
<table>
<thead>
<tr>
<th>PATENT NUMBER</th>
<th>ISSUE DATE</th>
<th>TITLE</th>
<th>NCATS INVENTORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>10,287,279 B2</td>
<td>5/14/2019</td>
<td>Inhibitors of human 12/15-lipoxygenase</td>
<td>Anton Simeonov; Ganesha Rai Bantukallu</td>
</tr>
<tr>
<td>10,272,039 B2</td>
<td>4/30/2019</td>
<td>Topical Sodium Nitrite Formulation</td>
<td>Hacksong Jin</td>
</tr>
<tr>
<td>10,555,942 B2</td>
<td>2/11/2020</td>
<td>Emetine compounds for treatment and prevention of flavivirus infection</td>
<td>Wei Zheng, Miao Xu, Ruili Huang, Wenwei Huang, Khalida Shamim, Hao Li</td>
</tr>
<tr>
<td>10,513,521 B2</td>
<td>12/24/2019</td>
<td>Compositions and methods for inhibiting BMP</td>
<td>Philip Sanderson, Wei Zheng, Xiuli Huang</td>
</tr>
<tr>
<td>10,370,348 B2</td>
<td>8/6/2019</td>
<td>Tocopherol and tocopheryl quinone derivatives as correctors of lysosomal storage disorders</td>
<td>Juan Marugan; Wei Zheng</td>
</tr>
<tr>
<td>10,239,830 B2</td>
<td>3/26/2019</td>
<td>Benzenesulfonamide upregulators of NPC1 for Neimann-Pick disease and other lysosomal storage disorders</td>
<td>Marc Ferrer; Juan Marugan; Samarjit Patnaik; Noel Southall; Wei Zheng; Raul Calvo; Patricia Dranchak</td>
</tr>
<tr>
<td>10,202,367 B2</td>
<td>2/12/2019</td>
<td>Heterocyclic compounds and methods of use thereof</td>
<td>Marc Ferrer; Juan Marugan; Noel Southall; Xin Hu; Wei Zheng</td>
</tr>
<tr>
<td>10,125,112 B2</td>
<td>11/13/2018</td>
<td>Modulators of the relaxin receptor 1</td>
<td>Marc Ferrer; Juan Marugan; Catherine Chen; Noel Southall; Wei Zheng</td>
</tr>
<tr>
<td>10,301,314 B2</td>
<td>5/28/2019</td>
<td>Compounds and methods for the prevention and treatment of tumor metastasis and tumorigenesis</td>
<td>Noel Southall; Juan Marugan; Samarjit Patnaik; Wei Zheng</td>
</tr>
<tr>
<td>10,555,942 B2</td>
<td>2/11/2020</td>
<td>Emetine compounds for treatment and prevention of flavivirus infection</td>
<td>Wei Zheng, Miao Xu, Ruili Huang, Wenwei Huang, Khalida Shamim, Hao Li</td>
</tr>
<tr>
<td>10,471,061 B2</td>
<td>11/12/2019</td>
<td>Galactokinase inhibitors for the treatment and prevention of associated diseases and disorders</td>
<td>Min Shen; Li Liu</td>
</tr>
<tr>
<td>10,239,830 B2</td>
<td>3/26/2019</td>
<td>Benzenesulfonamide upregulators of NPC1 for Neimann-Pick disease and other lysosomal storage disorders</td>
<td>Marc Ferrer; Juan Marugan; Samarjit Patnaik; Noel Southall; Wei Zheng; Raul Calvo; Patricia Dranchak</td>
</tr>
<tr>
<td>10,202,367 B2</td>
<td>2/12/2019</td>
<td>Heterocyclic compounds and methods of use thereof</td>
<td>Marc Ferrer; Juan Marugan; Noel Southall; Xin Hu; Wei Zheng</td>
</tr>
<tr>
<td>10,125,112 B2</td>
<td>11/13/2018</td>
<td>Modulators of the relaxin receptor 1</td>
<td>Marc Ferrer; Juan Marugan; Catherine Chen; Noel Southall; Wei Zheng</td>
</tr>
<tr>
<td>PATENT NUMBER</td>
<td>ISSUE DATE</td>
<td>TITLE</td>
<td>NCATS INVENTORS</td>
</tr>
<tr>
<td>---------------</td>
<td>------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>MIAO XU</td>
<td>10,555,942 B2</td>
<td>2/11/2020 Emetine compounds for treatment and prevention of flavivirus infection</td>
<td>Wei Zheng, Miao Xu, Ruili Huang, Wenwei Huang, Khalida Shamim, Hao Li</td>
</tr>
<tr>
<td>MIN SHEN</td>
<td>10,471,061 B2</td>
<td>11/12/2019 Galactokinase inhibitors for the treatment and prevention of associated diseases and disorders</td>
<td>Min Shen; Li Liu</td>
</tr>
<tr>
<td></td>
<td>10,413,548 B2</td>
<td>9/17/2019 Methods and compositions for the inhibition of Pin1</td>
<td>Min Shen; Anton Simeonov</td>
</tr>
<tr>
<td>NOEL SOUTHALL</td>
<td>10,301,314 B2</td>
<td>5/28/2019 Compounds and methods for the prevention and treatment of tumor metastasis and tumorigenesis</td>
<td>Noel Southall; Juan Marugan; Samarjit Patnaik; Wei Zheng</td>
</tr>
<tr>
<td></td>
<td>10,239,830 B2</td>
<td>3/26/2019 Benzenesulfonamide upregulators of NPC1 for Neimann-Pick disease and other lysosomal storage disorders</td>
<td>Juan Marugan; Samarjit Patnaik; Noel Southall; Wei Zheng; Marc Ferrer; Raul Calvo; Patricia Dranchak</td>
</tr>
<tr>
<td></td>
<td>10,202,367 B2</td>
<td>2/12/2019 Heterocyclic compounds and methods of use thereof</td>
<td>Juan Marugan; Noel Southall; Xin Hu; Marc Ferrer; Wei Zheng</td>
</tr>
<tr>
<td></td>
<td>10,125,112 B2</td>
<td>11/13/2018 Modulators of the relaxin receptor 1</td>
<td>Juan Marugan; Marc Ferrer; Catherine Chen; Noel Southall; Wei Zheng</td>
</tr>
<tr>
<td>PATRICIA DRANCHA</td>
<td>10,239,830 B2</td>
<td>3/26/2019 Benzenesulfonamide upregulators of NPC1 for Neimann-Pick disease and other lysosomal storage disorders</td>
<td>Juan Marugan; Samarjit Patnaik; Noel Southall; Wei Zheng; Marc Ferrer; Raul Calvo; Patricia Dranchak</td>
</tr>
<tr>
<td>PHILIP SANDERSON</td>
<td>10,513,521 B2</td>
<td>12/24/2019 Compositions and methods for inhibiting BMP</td>
<td>Philip Sanderson, Wei Zheng, Xiuli Huang</td>
</tr>
<tr>
<td>RAUL CALVO</td>
<td>10,239,830 B2</td>
<td>3/26/2019 Benzenesulfonamide upregulators of NPC1 for Neimann-Pick disease and other lysosomal storage disorders</td>
<td>Juan Marugan; Samarjit Patnaik; Noel Southall; Wei Zheng; Marc Ferrer; Raul Calvo; Patricia Dranchak</td>
</tr>
<tr>
<td>RUILI HUANG</td>
<td>10,561,666 B2</td>
<td>2/18/2020 Amido compounds as RORγt modulators and uses thereof</td>
<td>Wenwei Huang; Ruili Huang</td>
</tr>
<tr>
<td></td>
<td>10,555,942 B2</td>
<td>2/11/2020 Emetine compounds for treatment and prevention of flavivirus infection</td>
<td>Wei Zheng, Miao Xu, Ruili Huang, Wenwei Huang, Khalida Shamim, Hao Li</td>
</tr>
<tr>
<td>PATENT NUMBER</td>
<td>ISSUE DATE</td>
<td>TITLE</td>
<td>NCATS INVENTORS</td>
</tr>
<tr>
<td>---------------</td>
<td>------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>10,239,830 B2</td>
<td>3/26/2019</td>
<td>Benzenesulfonamide upregulators of NPC1 for Neimann-Pick disease and other lysosomal storage disorders</td>
<td>Juan Marugan; Samarjit Patnaik; Noel Southall; Wei Zheng; Marc Ferrer; Raul Calvo; Patricia Dranchak</td>
</tr>
<tr>
<td>10,508,106 B2</td>
<td>12/17/2019</td>
<td>Bicyclic BET bromodomain inhibitors and uses thereof</td>
<td>Shyh Ming Yang</td>
</tr>
<tr>
<td>10,351,532 B2</td>
<td>7/16/2019</td>
<td>Small molecule inhibitors of lactate dehydrogenase and methods of use thereof</td>
<td>Anton Simeonov; Shyh Ming Yang, Xin Hu, Ganesh Rai Bantukallu</td>
</tr>
<tr>
<td>10,555,942 B2</td>
<td>2/11/2020</td>
<td>Emetine compounds for treatment and prevention of flavivirus infection</td>
<td>Wei Zheng, Miao Xu, Ruili Huang, Wenwei Huang, Khalida Shamim, Hao Li</td>
</tr>
<tr>
<td>10,513,521 B2</td>
<td>12/24/2019</td>
<td>Compositions and methods for inhibiting BMP</td>
<td>Philip Sanderson, Wei Zheng, Xiuli Huang</td>
</tr>
<tr>
<td>10,370,348 B2</td>
<td>8/6/2019</td>
<td>Tocopherol and tocopheryl quinone derivatives as correctors of lysosomal storage disorders</td>
<td>Juan Marugan; Wei Zheng</td>
</tr>
<tr>
<td>10,561,666 B2</td>
<td>2/18/2020</td>
<td>Amido compounds as RORγt modulators and uses thereof</td>
<td>Wenwei Huang; Ruili Huang</td>
</tr>
<tr>
<td>10,555,942 B2</td>
<td>2/11/2020</td>
<td>Emetine compounds for treatment and prevention of flavivirus infection</td>
<td>Wei Zheng, Miao Xu, Ruili Huang, Wenwei Huang, Khalida Shamim, Hao Li</td>
</tr>
<tr>
<td>10,351,532 B2</td>
<td>7/16/2019</td>
<td>Small molecule inhibitors of lactate dehydrogenase and methods of use thereof</td>
<td>Anton Simeonov; Shyh Ming Yang, Xin Hu, Ganesh Rai Bantukallu</td>
</tr>
<tr>
<td>10,202,367 B2</td>
<td>2/12/2019</td>
<td>Heterocyclic compounds and methods of use thereof</td>
<td>Marc Ferrer; Juan Marugan; Noel Southall; Xin Hu; Wei Zheng</td>
</tr>
<tr>
<td>10,513,521 B2</td>
<td>12/24/2019</td>
<td>Compositions and methods for inhibiting BMP</td>
<td>Philip Sanderson, Wei Zheng, Xiuli Huang</td>
</tr>
</tbody>
</table>