Director’s Report

NCATS Advisory Council and CAN Review Board

CHRISTOPHER P. AUSTIN, M.D.
DIRECTOR, NCATS
JANUARY 15, 2015
New Format for Director’s Report

- Council requested more discussion time
- NCATS successes have multiplied → comprehensive accounting of progress in presentation form impractical
- Current presentation features selected highlights only
- Details and more complete accounting of progress since last Council/CAN Board meeting hyperlinked from Agenda, with embedded links to further details
- Feedback welcome
NCATS FY 2015 Budget Update

- In December, the President signed the CRomnibus
 - It is a combination of a CR for the Department of Homeland Security (through February 27, 2015),
 - And an omnibus covering funding for the rest of the government (through September 30, 2015)

- It includes funding for NCATS at approximately the same overall level as last year ($635 million, 0.3% increase)

- We are currently working on the FY 2016 Budget request, which is expected to be released on Monday, February 2, 2015
Congressional Briefings

- **21st Century Cures Initiative**
 - http://energycommerce.house.gov/cures
 - Dr. McInnes participated in a BIO-organized event with Rep. Joe Pitts (R-PA) and a roundtable with Rep. Tim Murphy (R-PA)
 - Dr. Austin participated in a roundtable with Reps. Fred Upton (R-MI) and Diana DeGette (D-CO) as a kickoff to FasterCures meeting
 - Dr. Austin met with Committee staff several times
Congressional Briefings

• Technology Transfer Caucus - “Next Generation R&D Partnerships: The NCATS Success Story”
 - Hosted by Rep. Ben Lujan (D-NM)
 - Participants:
 - Joe Allen, Allen & Associates
 - Chris Austin, NCATS
 - Ron Bartek, Friedreich's Ataxia Research Alliance
 - Steve Seiler, AesRX
 - Bruce Trapnell, Cincinnati Children’s Hospital
 - Paul Kaplan, Genzyme
Congressional Visits to NCATS

• Senate Appropriations Subcommittee Staff

• Senate Health, Education, Labor, and Pensions (HELP) Committee Staff

• Technology Transfer Caucus and DOE Staff

• Tox21 Program (co-hosted by NCATS and NIEHS)
 ➢ House Energy and Commerce Subcommittee on Environment and Economy staff
 ➢ Senate Environment & Public Works Committee staff
Ebola Medicines Day

Participants:
- Representatives from the biopharmaceutical industry, Bill & Melinda Gates Foundation, USAMRIID, DTRA, FDA, and NIH

Purpose:
- To provide industry representatives with state-of-the-science information on virus biology and host response.
NCATS Mission

To catalyze the generation of innovative methods and technologies that will enhance the development, testing and implementation of diagnostics and therapeutics across a wide range of human diseases and conditions.
NCATS “3D’s”

Develop
Demonstrate
Disseminate
Translational Innovation at NCATS
Three Selected Highlights

- **Early-stage translation**: chemical probe/lead development for target validation and therapeutic hypothesis testing
 - High cost and inefficiency of high-throughput screening

- **Mid-stage translation**: preclinical development to first-in-human studies
 - Inefficiency/ineffectiveness of rare disease therapeutic development

- **Late-stage translation**: large-scale studies in humans
 - Protracted time, high cost, inefficiency of clinical translational studies, including clinical trials
Innovation in early-stage translation:
High cost and inefficiency of high-throughput screening
What is High-Throughput Screening?

HTS defined as testing of >100,000 chemicals per day for a biological activity

Same cells or gene in each well of 1536-well plate +
Different chemical in each well of 1536-well plate +
Robots, laser detectors, and computers

Identification of which chemicals affect the cell’s function
High cost and inefficiency of high-throughput screening

- NCATS DPI HTS (3M samples tested) utilizes
 - 1500-2000 microplates/screen
 - 50 screens/yr
 - 100,000 microplates/yr
- **Cost:** many laboratories are spending $MM annually on microplate consumables before overhead or disposal
- **Waste:** waste stream for microplates is substantial

Q: WHY NOT CLEAN AND RE-USE PLATES?
WHY NOT CLEAN AND RE-USE PLATES?

1 well
267 mm (10.5 inch) diameter surface
Flat
Round

1536 wells
1 mm (0.004 inch) diameter surface
8 mm deep
Square
1. Add Reagent to Assay Plate
2. Transfer Compound to Assay Plate
3. Add Detection Reagent to Assay Plate
4. Read Assay Plate
5. Dispose of Assay Plate
Reusing Plates
Demonstration of Proof of Principle at NCATS

- Typical large screen uses 1600 1536-well plates full of experiments
- Instead of 1600 plates, DPI now uses 40 plates for entire screens - each plate used 40 times
- Since 2011, NCATS has screened ~50,000 plates of experiments using only ~1400 assay plates
 » 48,600 plates kept out of landfill
 » $472,000 saved
- Q: Could this principle be industrialized and disseminated?
‘Plate Cleaner’
Identifying Potential

• NCATS identified a gap - the need to develop automated instrumentation to clean previously used plates, making them suitable for reuse
 » Given the large quantities of plates required for HTS, a device could have viable commercial product potential

• NCATS saw an opportunity - to include “Automated Instrument to Clean Microtiter Plates” as part of the 2012 NIH SBIR Contract Solicitation

• SBIR Contract awarded to small business IonField (Moorestown, NJ)
IonField’s “Plasma Knife” Approach

• Working with NCATS, IonField analyzed what’s needed to clean plates to background - regardless of format or assay

• Benchmark for ‘clean’: no measureable carryover using qPCR or ion chromatography

• Two step process
 1. Optimized wash removes 99.9% of assay reagents from wells
 2. “Plasma knife” removes remainder of residual material
SBIR PHASE I

TYPICAL 1536 PLATE PROCESSED

SPRING 2013

CLIENT NIH/NCATS
SBIR PHASE I

POST SOLVENT WASH

DATE SPRING 2013

CLIENT NIH/NCATS
Post-cleaning 1536 well plate by SEM
Plasma Knife Technology Dissemination

- NCATS SBIR Phase I confirmed proof of principle; Phase II award ($1M) is funding commercial development

- Development of prototype instruments to be installed at beta program sites
 - To provide data for high volume applications in exchange for exclusive, early access to technology
 - Interest in beta program spans from big pharma to nonprofits (e.g., Novartis, AstraZeneca, Merck, Abbvie, BGI, Sanford Burnham)

- Working with reagent companies such as Promega to help develop cleaning protocols
3Ds in Early-Stage Translation

- DEVELOPED new technology to reuse microplates, reducing cost and waste in SBIR-driven public-private partnership

- DEMONSTRATED effectiveness at NCATS

- DISSEMINATING technology, creating new business opportunity for via SBIR partner
Innovation in mid-stage translation:
Inefficiency/ineffectiveness of rare disease therapeutic development

COUNCIL/CAN BOARD
- Christopher Austin, M.D. (Director)
- Pamela McInnes, D.D.S., M.Sc.(Dent.) (Deputy Director)

EXECUTIVE OFFICE
- Janis Mullaney, M.B.A. (Associate Director of Administration)

OFFICE OF THE DIRECTOR
- Pamela McInnes, D.D.S., M.Sc.(Dent.) (Acting Director)

OFFICE OF GRANTS MANAGEMENT & SCIENTIFIC REVIEW
- Pamela McInnes, D.D.S., M.Sc.(Dent.) (Acting Director)

OFFICE OF RARE DISEASES RESEARCH
- Pamela McInnes, D.D.S., M.Sc.(Dent.) (Acting Director)

OFFICE OF POLICY, COMMUNICATIONS & STRATEGIC ALLIANCES
- Dorit Zuk, Ph.D., (Director)

DIVISION OF PRE-ClinICAL INNOVATION
- Anton Simeonov, Ph.D. (Acting SD)

DIVISION OF CLINICAL INNOVATION
- Petra Kaufmann, M.D., M.Sc. (Director)
NCATS DPI: A Collaborative Pipeline

Project Entry Point

Target Validation → Assay Dev → Probe/Lead Development → Lead Optimization → Preclinical Development → Clinical Trials

Target

Unvalidated target → Validated target → Target assay → Lead compound → Preclinical development candidate

FDA approval

DPI Program

RNAi → Probe Devel/NCGC → Preclinical Development/TRND → Assay, Chemistry Technologies → BrIDGs → FDA Collaboration

Systems Toxicology (Tox21)

Repurposing

Paradigm/Technology Development

Deliverables

Genome-wide RNAi systems biology data

Chemical genomics systems biology data

Leads for therapeutic development

Approved drugs effective for new indications

New drugs for untreatable diseases

Small molecule and siRNA research probes

Predictive in vitro toxicology profiles

Drugs suitable for adoption for further development

Novel clinical trial designs

More efficient/faster/cheaper translation and therapeutic development
Lysosomal Storage Diseases (LSDs)

• Also known as lipid storage diseases

• Comprise 50 rare inherited disorders that usually affect children

• Fatty materials accumulate in the cells and tissues of the body

• These diseases can result in damage to the brain, peripheral nervous system, liver, and other organs and tissues; they are often fatal
Niemann-Pick Disease, type C (NPC)

- Autosomal recessive disease
 - Mutated genes are NPC1 (95%) and NPC2 (5%)
- Defects in NPC1 or NPC2 proteins cause cholesterol accumulation in lysosomes; a lysosomal storage disease
- Clinical manifestations:
 - Enlargement of the spleen (splenomegaly) and liver (hepatomegaly)
 - Progressive neurological disorders including cerebellar ataxia, swallowing problems, and progressive impairment of motor and intellectual function in early childhood

Lysosome size enlarged in NPC1 and NPC2 cells. Red: lysosome, Blue: nuclei
NPC Collaboration

• Project started in 2006 with multiple NPC patient foundations
• Basis of project was finding by multiple academic investigators that cyclodextrin had beneficial effects in NPC1 animal models

• NCATS TRND:
 » Validated cyclodextrin as a potential drug candidate
 » Pre-clinically developed cyclodextrin as part of project initially focused on finding treatments for NPC1
 » NCATS found that cyclodextrin and δ-tocopherol also lowered the buildup of lipid byproducts for several other LSDs
TRND Development of Cyclodextrin for the Treatment of Niemann-Pick Type C1 Disease

- **Collaborators:** Multi-party collaboration involving NIH, academia, patient advocacy groups, and industry
- **Objective:** Develop HP-β-CD as a therapy for Niemann-Pick Disease, type C (NPC), an LSD where defects in NPC1 or NPC2 proteins cause cholesterol accumulation in lysosomes
- **Scope:** A comprehensive pre-clinical program to support a Phase I trial for HP-β-CD in NPC, 1st by intraventricular injection, later changed to lumbar intrathecal (IT injections)
- **Status:** Phase I clinical trial started at NIH Clinical Center in February 2013 and is ongoing
Molecule: HP-β-CD

- Used as a pharmaceutical excipient due to ability to increase solubility of and dissolution rate of poorly water-soluble drugs

- β-cyclodextrin is found in the FDA “generally recognized as safe” (GRAS) list, and its derivative, HP-β-CD, is referenced in the USP/NF and EP and is cited in the FDA’s list of inactive pharmaceutical ingredients

Loftsson et al., 2005, Loftsson et al., 2007.
Molecule: HP-β-CD

- Used as a pharmaceutical excipient due to ability to increase solubility of and dissolution rate of poorly water-soluble drugs
- β-cyclodextrin is found in the FDA “generally recognized as safe” (GRAS) list and its derivative, HP-β-CD, is referenced in the USP/NF and EP and is cited in the FDA’s list of inactive pharmaceutical ingredients

Loftsson et al., 2005, Loftsson et al., 2007.
Phenotypic Disease Relevant Assay-Based Profiling Across LSDs

LysoTracker-red dye stains enlarged lysosomes in LSD patient cells:

WT NPC ML III ML IV (8mo.) MPS I
MPS VI MPS VII Wolman Batten NPA
Agreement with Vtesse January 7, 2015
Advancing treatments for Lysosomal Storage Disorders

• CRADA: NCATS - NICHD - Vtesse (Gaithersburg, MD)

NIH teams with industry to develop treatments for Niemann-Pick disease

Researchers from the National Institutes of Health have entered into an agreement with biotechnology company Vtesse, Inc., based in Gaithersburg, Maryland, to develop treatments for Niemann-Pick disease and other lysosomal storage disorders.

Lysosomal storage diseases, also known as lipid storage diseases, comprise about 50 rare inherited disorders that usually begin in childhood. Fatty materials accumulate in the cells and tissues of the body, causing damage to the brain, peripheral nerves, liver, and other organs and tissues; they are often fatal.

Researchers at the National Center for Advancing Translational Sciences, part of NCATS, have been working with Vtesse to develop new therapies for these diseases.

For Immediate Release: Wednesday, January 7, 2015

Less than two years after New Enterprise Associates and Pfizer Ventures got together to launch Cydan, an incubator for new orphan drug disease developers, the group is spawning its first new biotech with a $25 million round and a program for Niemann-Pick disease.

The venture backing provides enough money to get the pivotal data needed to know whether or not they have a product, says Chris Adams, who runs Cydan out of Cambridge, MA, and is on the board of the newly created Vtesse. The same syndicate that set up Cydan--NEA, Pfizer (SPFE), Lundbeckfond Ventures, Bay City Capital and Alexandria Venture Investments--is also backing the startup, he adds, which is being run by the experienced drug developer Ben Machielse and his small but knowledgeable team.

It's a virtual operation, notes Machielse, but there's also a wide group of investigators at the NIH and elsewhere who have pitched in to get VTS-270--a formulation of 2-hydroxypropyl-beta-cyclodextrin--to the threshold of a pivotal study.

"I actually got approached by Dave (Mott, NEA partner and former MedImmune CEO) in May to actually see if I could help out with this particular opportunity," says Machielse, a MedImmune veteran and former CEO of Omthera, which was acquired by AstraZeneca (AZA). Vtesse licensed in the program but will continue to work with public investigators to take it the final step in the clinic.

"This public/private model is pretty cool," says Machielse, adding that this particular biotech business model should be something that can be replicated in other developers. Machielse is keeping the biotech close to home--and the NIH--in Gaithersburg, MD.

Their lead drug, VTS-270, is designed to clear away the cholesterol that builds up inside the cells of Niemann-Pick patients. But there are also plans to add to the pipeline. Vtesse is starting up with a Cooperative Research and Development Agreement, or CRADA, with the Eunice Kennedy Shriver National Institute of Child Health and Human Development and the National Center for Advancing Translational Sciences at NIH. Vtesse and NCATS forged a licensing agreement for the current rights held by NIH for the worldwide use of cyclodextrin, delta-tocopherol, and derivatives of tocopherol for lysosomal storage diseases, including NPC.

3. Pfizer, NEA orphan drug project launches its first biotech on PhII/III threshold

By John Carroll

Less than two years after New Enterprise Associates and Pfizer Ventures got together to launch Cydan, an incubator for new orphan drug disease developers, the group is spawning its first new biotech with a $25 million round and a program for Niemann-Pick disease.

The venture backing provides enough money to get the pivotal data needed to know whether or not they have a product, says Chris Adams, who runs Cydan out of Cambridge, MA, and is on the board of the newly created Vtesse. The same syndicate that set up Cydan--NEA, Pfizer (SPFE), Lundbeckfond Ventures, Bay City Capital and Alexandria Venture Investments--is also backing the startup, he adds, which is being run by the experienced drug developer Ben Machielse and his small but knowledgeable team.

It's a virtual operation, notes Machielse, but there's also a wide group of investigators at the NIH and elsewhere who have pitched in to get VTS-270--a formulation of 2-hydroxypropyl-beta-cyclodextrin--to the threshold of a pivotal study.

"I actually got approached by Dave (Mott, NEA partner and former MedImmune CEO) in May to actually see if I could help out with this particular opportunity," says Machielse, a MedImmune veteran and former CEO of Omthera, which was acquired by AstraZeneca (AZA). Vtesse licensed in the program but will continue to work with public investigators to take it the final step in the clinic.

"This public/private model is pretty cool," says Machielse, adding that this particular biotech business model should be something that can be replicated in other developers. Machielse is keeping the biotech close to home--and the NIH--in Gaithersburg, MD.

Their lead drug, VTS-270, is designed to clear away the cholesterol that builds up inside the cells of Niemann-Pick patients. But there are also plans to add to the pipeline. Vtesse is starting up with a Cooperative Research and Development Agreement, or CRADA, with the Eunice Kennedy Shriver National Institute of Child Health and Human Development and the National Center for Advancing Translational Sciences at NIH. Vtesse and NCATS forged a licensing agreement for the current rights held by NIH for the worldwide use of cyclodextrin, delta-tocopherol, and derivatives of tocopherol for lysosomal storage diseases, including NPC.
Innovation in late-stage translation:
Inefficiency of clinical translational studies, including clinical trials
NCATS Division of Clinical Innovation

Strategic Goals

1. **Train**, develop and cultivate future leaders in translational science

2. **Innovate in** translational science
 1. Engage patients and **communities** in every phase of the translational process
 2. Promote the **integration** of special and underserved populations in translational research across the lifespan
 3. Innovate **processes** to increase the quality and efficiency of translational research, particularly of multi-site trials
 4. Advance the use of modern **informatics** in translation

3. **Communicate** effectively with internal and external audiences using clear, timely, and consistent messages

4. **Measure** success of the CTSA program through a set of common **metrics**

5. **Partner** effectively with NIH and other stakeholders
From IOM to Implementation

- Based on the IOM report and Advisory Council WG recommendations, created new CTSA Steering Committee

- Steering Committee and CTSA PIs identified critical needs and opportunities

- Four demonstration projects initiated in mid-2014 to pilot solutions prior to implementation via new FOAs
Ongoing Consortium-wide Demonstration Projects

1. Transforming Multi-Site Trials: Central IRBs for the CTSA Program

2. Innovating Research Participant Recruitment

3. Enhancing Clinical Research Professionals’ Training and Qualification

4. Innovating Scientific Review for the CTSA Program
Evolving the Program to Transform Clinical Translational Science

CTSA Hubs

TIC: Trial Innovation Centers
- Central IRB
- Contracting
- Budgeting
- Other support PRN

RIC: Recruitment Innovation Centers
- Feasibility Assessment
- Recruitment Plan and Implementation

Multi-site Study funded by NIH IC or others
- Clinical Lead
- Stats/Data Management

No need to re-build trial components each time
Discussion