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Too many roads not taken

Most protein research focuses on those known before the human genome was
mapped. Work on the slew discovered since, urge Aled M. Edwards and his colleagues.

hen a draft of the human genome
was announced in 2000, funders,
governments, industry and

researchers made grand promises about how
genome-based discoveries would revolu-
tionize science. They promised that it would
transform our understanding of human biol-
ogy and disease, and provide new targets for
drug discovery. Yet more than 75% of protein
research still focuses on the 10% of proteins
that were known before the genome was
mapped — even though many more have
been genetically linked to disease.

We performed a bibliometric analysis to
assess how research activity has altered over
time for three protein families that are cen-
tral in disease and drug discovery: kinases,
ion channels and nuclear receptors. For all
three, we found very little change in the pat-
tern of research activity — which proteins
are associated with the highest number of

publications — over

O NATURE.COM the past 20 years'.
Protein mapping Even those proteins
gainsahumanfocus:  that have been directly
go.nature.com/vhgetf associated with disease

remain ‘hidden in plain sight, with scientists
proving very reluctant to study them.

Where there has been a shift in research
activity, it was often spurred by the emergence
oftools to study a particular protein, not bya
change in the protein’s perceived importance.
We believe that ensuring high-quality tools
are developed for all the proteins discovered
may be all that is needed to drive research into
the unstudied parts of the human genome —
even within funding and peer-review systems
that are inherently conservative.

‘We searched for mention ofeveryhuman »
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75% of protein
research still focused
on 10% genes known
before human

genome was mapped
AM Edwards et al, Nature, 2011
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What is a Drug Target?

A material entity with a quantifiable mass

...typically a macromolecule
— It physically interacts with the therapeutic drug;

— It is typically native to the biological system on which
the drug acts (“native” can be in a disease state)

— the physical Drug-Target interaction causes
detectable effects in living systems

A drug target is not a pathway or other concept

However, the clinical outcome may be due to
down-stream / ripple effects

Amenable to classification/ontology




Target Development Level

GPCR Hydrolase

Transferase
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Transporter

Kinase
lon channel
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DT Development Level 1

e Tclin proteins are associated with drug
Mechanism of Action (MoA)

 Tchem proteins have bioactivitis in ChEMBL and
DrugCentral, + human curation for some targets
— Kinases: <= 30nM
— GPCRs: <=100nM
— Nuclear Receptors: <= 100nM
— lon Channels: <= 10uM
— Non-IDG Family Targets: <= 1uM
Note: Bioactivity cut-off values are subject to revision

< 1IDG

4/20/15 revision




DT Development Level 2

* Thio proteins lack small molecule annotation cf.
Tchem criteria, and satisfy one of these criteria:

— protein is above the cutoff criteria for T,

— protein is annotated with a GO Molecular Function or Biological
Process leaf term(s) with an Experimental Evidence code

— protein has confirmed OMIM phenotype(s)

e Tdark (“ignorome”) have little information

available, and satisfy these criteria:

— PubMed text-mining score from Jensen Lab <5
— <=3 Gene RIFs
— <= 50 Antibodies available according to antibodypedia.com

< 1IDG

8/20/15 revision
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Antibodies vs Publications
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TDL: Independent Validation
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Tdark: Searching for the Light

Avi Ma’ayan’s Harmonizome examines experimental information
density per protein, processed from 70 genomic datasets. Tdark
proteins have less data compared to the other 3 categories.

“Patents” examines the distribution of text-mined granted
patents per protein from SureChEMBL. Tdark proteins are
subject to a significantly lower number of patents.

“R0O1 grants” examines the distribution of text-mined RO1 grant
counts per protein, using NIH RePORTER data. Most Tdark
proteins are not funded via the RO1 mechanism.

“Disease associations” examines the distribution of text-mined
disease associations per protein. —~90% of Tdark proteins have
a score of zero.

This uneven distribution is reproduced across multiple instances,
e.g., from a different literature corpus (patents), and when using
experimental data (Harmonizome). Thus, there appears to be
a Knowledge Deficit concerning “dark” proteins. &IDG

8/31/16 revision




Target Disease Associations

Telin

Tchem

Thio

Tdark

77% have
Zscore >4

0.6-

density

55% have
Zscore >4

55% have
Zscore >4

75% have 0
associations
9% have
Zscore >4

http://diseases.jensenlab.org

ZScore
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The Darkest of the Dark

Color by:

1100
GWAS Phen h,rp e Count

0
300 t

81
®:
.:::. 3
0
5
280 ®s
@5
87
.:::. =]
13
200
150
100
ED -

o

Tclin Tchem Thio Tdark

Presence (color) or absence (black) of GWA studies for TDL (1,251 human proteins),
for which there is no Tissue Expression data (aggregated from multiple sources). Of

these proteins lacking GWAS/expression data, 1,090 (5.4%) are Tdark. P
9/14/16 revision ﬁ IDG




Take Home Message 1

There is a Knowledge Deficit

over 37% of the proteins remain
poorly described (Tdark)

~10% of the Proteome (Tclin & Tchem)
can be targeted by small molecules

These observations are supported by
different methods across multiple datasets

8/31/16 revision fﬁ IDG



DrugCentral Data Structure

MEDCHEM PHARMACOLOGICAL FIRST
PROPERTIES ACTION APPROVAL
MARKETING
STATUS

TARGET
ANNOTATIONS
MECHANISM
DOSE OF ACTION
FORMULATION
BIOACTIVITY
TARGET
CLASSIFICATION

EXTERNAL
REFERENCES AND
SYNONYMS

e |nitially to answer “how many drugs are out there”...

DRUG
LABEL

 Mapped products (what patients and docs call “drugs”)
onto active ingredients (what scientists call “drugs”)

e Also wanted to know how many drug targets there

dare..........
Oleg Ursu et al., Nucl Acids Res, submitted 8/21/16 revision .;



DrugCentral Stats: APls & Targets
Entities (Annotated APIs)

Active pharmaceutical ingredients 4,444
FDA drugs 2,021
Drugs approved outside US 2,423
Small molecules 3,799
Salts and inorganic molecules 112
Biologics and peptides 239
Other drugs 294
Parent molecules 199 (308)
Drug efficacy targets 837 (1,689)
Human protein targets 600 (1,387)
Infectious agents targets 194 (221)
Metabolites & biopolymers 43 (89)
Protein-drug crystal complex (PDB) 48 (82)
Drug-protein crystal complex (PDB) 1,452 (283)

Oleg Ursu et al., Nucl Acids Res, submitted 8/21/16 revision .;



Drug/Disease:
A Small (Molecule) World

WHO ATC Indications Contra- Off-label
codes indications indications
Jnique 4195 2224 1,458 347
Concepts
Unique APIs 2,941 2,247 1,376 646

We introduced controlled vocabularies and identifiers in
DrugCentral:

e Xxx disease concepts (331 off-label) addressed by APIs
e Yyy disease concepts are contra-indications only...

Oleg Ursu et al., Nucl Acids Res, submitted 8/21/16 revision



A Comprehensive Map of Molecular
Drug Targets

 We systematically compiled efficacy target information using drug
label information and primary scientific literature. It is rather
challenging to assign efficacy targets, especially to non-selective
agents, particularly for anti-infective and anticancer drugs.

e Drugs targeting protein kinases have dramatically increased over
the past 5 years, compared to e.g., the lack of innovation for
nuclear receptor-targeted drugs over the same period.

e We analyzed Drugs and Target Classes according to their
therapeutic area (ATC Codes). Most progress has been made in
oncology, antivirals, immunosuppressants and diabetes.

 Small molecules targeting GPCRs are used in almost all therapeutic
areas, while kinases are currently drug targets exclusively in the

antineoplastic and immunomodulatory category. 5
R. Santos, O Ursu et al., Nat. Rev Drug Discov, 2016, accepted 6/03/16 revision



Innovation Patterns per Privileged
Family Classes
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_~Stomatological preparations
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A Target-Centric Analysis of Global
Drug Sales Data

o Aggregated sales from 75 countries, including Europe, North
America and Japan, over a five year period (2011-2015), collected by
IMS Health, were interrogated from a drug target (Tclin) perspective.

e Data were normalized by mapping revenue for pharmaceutical
products to Active Pharmaceutical Ingredients using DrugCentral,
corrected by number of APIs per product and by the number of
efficacy (Tclin) targets per API.

 We analyzed all targets according to ATC therapeutic area Codes for
the corresponding drugs.

e Sales by Level 2 ATC code levels and by target class were normalized
to percent values in a circular histogram.

e These ATC chapters show that the top earning mode-of-action drug
categories are “antineoplastics and immunomodulators”, followed by
the “nervous system” chapter.

T Oprea et al., Nat. Rev Drug Discov, in preparation 8/22/16 revision IDG
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TNF - $163.39 bil

certolizumab pegol

golimumab
infliximab ‘

etanercept

adalimumab

HMGCR - $122.55 bil

other

fluvastatin——
pitavastatin— \
pravastatin |

simvastatin

atorvastati !

ADRB2 - $90.02 bil

rosuvastatin

other salmeterol
carvedilol e
timolol_y=
epinephrine -salbutamol

formoterol

INSR - $143.55 bil

other

insulin glulisine =_
insulin detemir~
insulin lispro

insulin human

insulin
glargine

Nnsulin aspart

H+/K+ ATPase - $118.16 bil

other

dexlansoprazole—_
rabeprazole”
lansoprazole

pantoprazole

esomeprazole

.
‘omeprazole

OPRM1 - $87.97 bil

other oxycodone

morphine_ ( v
naloxone ( ~fentanyl

tramadol buprenorphine

IMS Health: Revenue Per Drug Target

NR3C1 - $142.75 bil

other fluticasone

propionate
dexamethasone..(
beclometasone :
dipropionate— “hudesonide
betamethasone

mometasone furoate

AGTR1 - $99.98 bil

other
|r.besartan- valsartan
telmisartan
candesartan cilexetil !
Imesartan
losartan medoxomil

PTGS2 - $84.04 bil

other paracetamol
acetylsalicylic aci(_if"- ‘-diclofenac
celecoxib. *
mesalazine ibuprofen

Most lucrative targets between 2011 and 2015: the TNFalpha receptor; the insulin R; the
glucocorticoid R; HMG-CoA-reductase, the gastric proton pump; the angiotensin R1; adrenergic
B,-R; p-opioid-R; and cyclooxygenase-2. Based on global drug sales data (75 countries)

T Oprea et al., Nat. Rev Drug Discov, in preparation 8/22/16 revision




Take Home Message 2

We have therapeutic agents for ~¥15%
of human diseases )

...the top 5 best-earning targets are not GPCRs

There are many new therapeutic
opportunities

*) disease-ontology.org catalogs ~9,000 disease concepts. This lacks ~6,000 rare diseases.
Thus we estimate ~15,000 disease concepts, of which ~2500 have therapeutic agents .

8/21/16 revision
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Cancer Driver Genes: How Many?

Genome sequencing Identifying cancer driver genes Different studies
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TCGA's pan-cancer analysis: 127 significantly mutated genes across 12 tumor types (out of 3281
genomes), which is similar to the ~140 genes identified from 3,284 cancer genomes.

e The COSMIC Cancer Gene Census contains 595 genes (513 in the 2013 figure, above)
Only 58 genes that are common among the three (67 genes between the 2 pan-cancer studies)

Workman, P. & Al-Lazikani, B. Nat. Rev. Drug Discov. 12, 889—890 (2013)  6/03/16 revision
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http://www.nature.com/tcga/

Overlap of Cancer Drug Targets with
Cancer Drivers

/" 154 cancer drugs 109
| o : Cancer
123 act Targets
through
protein 553 cancer gene
target products
modulation

p

-

Workman, P. & Al-Lazikani, B. Drugging cancer
genomes. Nat. Rev. Drug Discov. 12, 889—890 (2013)

R. Santos, O Ursu et al., Nat. Rev Drug Discov, 2016, accepted 6/03/16 revision



We Track Expression Data
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GTEx Expression for CNS drug targets

~ 25% higher ~ 27% not
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It’s possible that some drugs localize preferentially in the brain.
But it’s also possible that some expression data are inconsistent.
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e Large-scale expression data are rarely in
agreement (even with peer-reviewed literature).
This is our biggest challenge.

* COSMIC vs. TCGA vs. others —agreement is partial

*There is no mathematical way to establish what is
the “truth”. Thus, we have no programmatic way to
assign higher levels of confidence to one source
over another.

— Math & stats can show trends, and where data are consistent...

— Analytics & modeling can help us look for inconsistencies, but
only based on existing evidence



FAERS processing (Aug, 2016)

e Removed duplicated reports (last update kept)

* Added missing APIs mappings — additional information
based on product names was added to openFDA mappings

* We removed all reports with no product — APIs mappings

Reports Drugs (unique MedDRA Reports with

APIs) terms PRR* >= 2
6,534,096 3,193 19,238 944,471

PRR — proportional reporting ratio

 FAERS Total: 86,014,009 API — AE pairs
e Filtering for Drug suspected to cause AE:
36,283,400 APl — AE pairs

Oleg Ursu, C Bologa and T Oprea, unpublished 8/21/16 revision



Drug-AE-Target Relationships

10

——— —

QI TGHA = e e

I
e Hierarchical (Ward) clustering was applied to the dis-similarity matrix
computed from 17,848 AEs recorded for the 3,193 APIs, which in turn bind
to 1,247 targets [these are mapped into Tclin & Tchem)]

e The 17848x1247 dis-similarity matrix was projected onto 2D using
Stochastic Neighbor Embedding

C Bologa, Oleg Ursu, and T Oprea, unpublished 8/21/16 revision
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Targets Clustered in AE Space
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* Nine clusters representing Target relationships derived from the
17,848 AE-Drug pairs and the 3,193 Drug — 1,247 Targets matrix
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AE vs Target Annotations
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* How many AEs per drug vs. known targets per drug?
e Short answer: There is no relationship

Oleg Ursu, C Bologa and T Oprea, unpublished 8/21/16 revision
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Take Home Message 3

There is a great deal of uncertainty
with respect to experimental data

FAERS data may provide
an independent angle for target prioritization
and shortcuts to druggable targets

8/21/16 revision fﬁ IDG



IDG KMC Team

e University of New Mexico: Cristian Bologa, Jayme Holmes, Steve L. Mathias,
Tudor Oprea, Larry Sklar, Oleg Ursu, Anna Waller, Jeremy J Yang, Gergely
Zahoranszky-Kohalmi?)

* Novo Nordisk Foundation Center for Protein Research: Lars Juhl Jensen, Sgren
Brunak

e |cahn School of Medicine at Mount Sinai: Avi Ma'ayan, Joel Dudley, Andrew
Rouillard?

e EMBL-EBI— European Bioinformatics Institute (ChEMBL team): John Overington3),
Anne Hersey, Anna Gaulton, Anneli Karlson3), George Papadatos?

 NIH-NCATS: Rajarshi Guha, Ajit Jadhav, Dac-Trung Nguyen, Anton Simeonov, Noel
Southall

e University of Miami: Stephan Schirer, Dusica Vidovic
e with help from IMS Health: Allen Campbell, Christian Reich

1) NIH-NCATS; 2) GSK; 3) Stratified Medical -
8/22/16 revision & IDG



4 T ILLUMINATING t DRUGGABLE GENOME

Consortium

8 Furopean
R Molecular
BHE Biology Lab

Icahn
School of
Medicine at
Mount
Sinai

The IDG Consortium is an NIH network of Knowledge Management Centers that collect &
integrate data from across various resources to aid in prioritizing illumination of
understudied protein targets, and connecting these with Technology Development Centers
that bring forth new technologies and tool sets to shed light on to these targets.



Pharos: The IDG KMC Portal

PHAROS  Diseases  Targels  Ligands Search Q

# Home | Targets

[ml Development Level e

& :‘Il':'-
@

Drug Target Ontology

-

[l Target Family

| Unknown 1/20186 " 3 3| 4| 5|67 | =218 | 2018 | » & = & @ | w0
] Kinase & (578 ]
oCGPCR® (421 ] + | Name Gene Development Target Log Jensen Antibody Knowledge
Level Family Novelty = Score 3 Counts Availability
GPCR [ 406 ]
39S ribosomal protein L52, mitochondrial MRPL52 Tdark Unknown 1.97 0.01 33 E
] lon Channel & € ; ) .
| Muclear Receptor (& (48]
Forkhead box protein D4-like 3 FOXDAL3 Unknown 164 0.01 3
@il TechDev Pl
J Bryan Roth & 313 )
Coiled-coil domain-containing protein 190 CCDC190 Tdark Unknown 1.61 0.00000 53
| Gary Johnson & [ 303 ngp 3

Watch the 2-minute YouTube video here:
https://pharos.nih.gov/idg/index#

9/14/16 revision



https://pharos.nih.gov/idg/index

llluminating the Druggable Genome

~25 Million Papers

6.6 million Patents 20,200 Proteins
>100 Million EHRs (RUF)

. - R
Seeking New Knowledge
R S =

~15,000

Diseases 4,400 Drugs

8/21/16 revision fﬁ IDG
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