SUMMARY STATEMENT PROGRAM CONTACT: (Privileged Communication) Release Date: 03/18/2015 Dr. PJ Brooks 301-402-0883 pjbrooks@mail.nih.gov Application Number: 1 R41 TR001338-01 **Principal Investigator** **FUJII, GARY PHD** Applicant Organization: MOLECULAR EXPRESS, INC. Review Group: ZRG1 IMST-S (12) Center for Scientific Review Special Emphasis Panel Small Business: Basic and Integrative Bioengineering Requested Start: 07/01/2015 Dual IC(s): EB Project Title: Development of a Gene and Oligonucleotide Delivery System SRG Action: Impact Score: 29 Next Steps: Visit http://grants.nih.gov/grants/next steps.htm Human Subjects: 10-No human subjects involved Animal Subjects: 10-No live vertebrate animals involved for competing appl. Project Direct Costs Estimated Year Requested Total Cost 1 201,814 324,133 TOTAL 201,814 324,133 ADMINISTRATIVE BUDGET NOTE: The budget shown is the requested budget and has not been adjusted to reflect any recommendations made by reviewers. If an award is planned, the costs will be calculated by Institute grants management staff based on the recommendations outlined below in the COMMITTEE BUDGET RECOMMENDATIONS section. ## 1R41TR001338-01 Fujii, Gary RESUME AND SUMMARY OF DISCUSSION: This application seeks to develop functional enveloped virus-like-particles (EVLPs) in which anti-sense oligonucleotides or other types of genetic medicines are conjugated with viral capsid proteins and encapsulated using liposome-like delivery devices. A proofof-concept study was proposed in an investigation of newly constructed EVLPs and their HIF-1α knockdown activities using cultured cell models. If successful, the proposed EVLPs would be useful for delivering genetic medicines to targeted cells or tissues, and protecting them from pre-mature loss that other non-encapsulated delivery systems suffered. The panel noted that the focus of this proposal was highly significant since it aimed to address an unmet challenge, i.e. to deliver genetic materials to targeted cells in vivo; and the idea of capsid-conjugated encapsulation appeared novel. The team of investigators is made by field experts, some with impressive SBIR/STTR track records; the resources and environment are excellent. Enthusiasm from reviewers was high despite some identified weaknesses. There were some concerns in the shortage of comparative analysis for the proposed approach over competitive methods; the in vitro feasibility study might provide limited insights on its in vivo performance; and non-specific hybridization of single strand DNA in organelles was not discussed. Overall, the panel was excited about the significance of the application; the identified weaknesses did not reduce enthusiasm; a final score was received reflecting a R&D program expected to have a high impact in the areas of genetic medicine delivery and targeted therapies of disease such as cancer. **DESCRIPTION** (provided by applicant): The knockdown of targeted genes by anti-sense oligonucleotides (ODNS) and genetic medicines (collectively, G-MEDS) holds promise for a variety of therapies. The delivery of effective quantities of ODNS to specific cells, however, has proved to be challenging. We propose here a novel approach to ODN delivery that involves enveloped virus-likeparticles (EVLPs). These delivery agents are prepared by the in vitro self- assembly of pure G-MEDS and pure viral capsid protein (CP) into virus-like nanoparticles particles (VLPs). The capsid protects the contents yet, as we have demonstrated, is capable of giving up its contents in the cytoplasm of mammalian cells. The particles, which are highly mono-disperse, are then enveloped by lipid bilayers that can suppress the immunogenicity of the VLPs and are capable of being functionalized for targeting and uptake by mammalian cells of interest. In preliminary experiments, we have demonstrated our ability to prepare EVLPs using the CP of the cowpea chlorotic mottle virus and a model antisense ODN for vascular endothelial growth factor (VEGF), a protein over-expressed in many cancer cells to stimulate angiogenesis a facilitate tumor survival under low- oxygen conditions. We propose to optimize the assembly and to functionalize the lipid bilayers with epidermal growth factor (EGF), which binds the EGF receptor that is over-expressed on cancer cells, especially those of breast cancer. The effectiveness of the EVLP will be demonstrated by assaying the reduction in the secretion of VEGF in cultured breast cancer cells. **PUBLIC HEALTH RELEVANCE:** The development of the proposed system for delivering genetic medicines such as genes and oligonucleotides would be an important medical advance. Its development would facilitate the targeted delivery of genetic medicines to specific cells, tissues and organs, thus enabling the development of healthcare products which will exert a significant impact on the practice of medicine. ### **CRITIQUE 1:** Significance: 3 Investigator(s): 1 Innovation: 3 Approach: 2 Environment: 1 FUJII, G **Overall Impact:** This is a strong proposal that addresses a prominent problem for genetically derived medications. The approach is innovative, combining targeted liposome encapsulation with capsid/g-med particle formation. The group has demonstrated the expertise to synthesize the particles and provides a sound plan for demonstrating the efficacy of the particles *in vitro*. A better sense of how this work will position the company in the marketplace and move towards translational trials would be beneficial. ## 1. Significance: ## Strengths - The proposal outlines an approach for antisense RNA delivery that addresses existing challenges within the field. Through efficient sequence independent encapsulation of RNA within a cowpea chlorotic mottle virus capsid (ccmc CP) and subsequent creation of a targeting envelope, the team presents a convincing achieving efficient delivery and suppress. immunogenicity. - The uniformity of CP-G-med particles is impressive. #### Weaknesses - A clear sense is not provided on how this effort will practically move beyond the progress that has been shown by the host of other antisense experiments and technologies that have surfaced over the last decade. The PI should work to paint a clear picture of how this work will position this technology compared to the other contenders within the field. - What are the gold standards in the field, and how might a direct comparison to field leaders be carried out in Aim 3. ## 2. Investigator(s): ## Strengths The PI exhibits a history of managing SBIR/STTR grants and aggressively pursuing IP in the field (in lieu of publishing). An appropriate infrastructure and support team appear to be in place. ### Weaknesses None noted. ### 3. Innovation: #### Strengths • The combination of liposome encapsulation for targeted delivery combined with the capsid encapsulation of the chosen G-meds appears to be innovative. #### Weaknesses None noted. #### 4. Approach: ### **Strengths** • The approach seems appropriate moving from a refinement of formulation demonstrated in preliminary data (Aims 1 & 2) towards a proof of principle demonstration *in vitro* (Aim 3) #### Weaknesses The approach to minimizing cationic lipids within the formulation and subsequently substituting other cationic lipids at the same concentration seems overoptimistic. I would imagine the different cationic lipids will be stable at different compositions and one would expect that the 'minimization process' described for DOTAP would need to be repeated for any substitutes. ### 5. Environment: ## **Strengths** Molecular Express will leverage their own resources against those available at UCLA. Facilities and equipment seem adequate for the proposed work. #### Weaknesses None noted # Phase II (Type 2 R42 and Type 2 R44 applications): Not Applicable ### Fast Track (Type 1 R42 and Type 1 R44 applications): Not Applicable ## **Protections for Human Subjects:** Not Applicable (No Human Subjects) #### **Vertebrate Animals:** Not Applicable (No Vertebrate Animals) #### **Biohazards:** Not Applicable (No Biohazards) ### **CRITIQUE 2:** Significance: 3 Investigator(s): 2 Innovation: 3 Approach: 3 Environment: 2 **Overall Impact:** This STTR Grant, a collaboration between Molecular Express, Inc. and the University of California at Los Angeles, will focus on the delivery of antisense oligonucleotides (ODNS) and genetic medicine (G-MEDS) that involves enveloped virus-like-particles (EVLPs). These EVLPs are composed of the assembly of pure G-MEDS and pure viral capsid protein into virus like molecules which are then enveloped by lipid bilayers that could be functionalized for targeting to specific cells. The investigators are well prepared to conduct this work, but the proposal is confusing to read is it mixes results with methods. It is also a very complex project given the various elements and not sure how *in vitro* results will link to *in vivo* results. #### 1. Significance: #### Strengths • The delivery of ODN and G-Meds can serve as an important therapeutic modality that continues to advance given new delivery technologies and approaches. #### Weaknesses • The proposed delivery method for these G-MEDS is complex and there are many challenges toward future clinical uses of these delivery systems. There will always be the concern on how these will be scaled up and tested for quality control and quality assurance as well as the difference between what will happen *in vitro* and what will happen *in vivo*. # 2. Investigator(s): ### **Strengths** It is a long-lasting collaboration of Dr. Fujii with Drs. Gelbart and Knobler on the development of the EVLP technology. #### Weaknesses - The specific role of Dr. Gelbart and Dr. Knobler in the Senior and Key Personal Profile has not been identified in the proposal on these forms. - There is a concern that Dr. Fujii has the time to work on the current project considering the current funded work (including those with no cost extension) and the series of current proposals. - Minor point Dr. Gelbart NIH Biosketch is not accurate as it talks about the contribution to a SBIR Fast Track collaborative proposal. - The proposal needs to have an NIH Biosketch for Su Ming Chiang and Thai Q Do as they have a significant involvement in this work given the current budget proposal and the scope of their work involving the lipid wrapping studies and the analysis of the lipid components of EVLP's. ### 3. Innovation: ## Strengths - The methods are one commonly used in these types of studies, but the twist is the use of the capsid protein cowpea chlorotic mottle virus (CCMV), specifically they will use an antisense that targets the expression of Hypoxia-Inducible Factor 1α with his capsid protein, followed by coating with a lipid bilayer which is functionalized by the use of epidermal growth factor (EGF) as the targeting agent to the receptor overexpressed in breast cancer cells. - There previous work has shown success with using the VEGF antisense in this process. - They are also using a relevant molecule in these studies, specifically the Hypoxia-Inducible Factor 1α , which is in use in clinical trials. #### Weaknesses • It is a standard process by which one forms a delivery system protected by lipids and then functionalized for targeted drug delivery. # 4. Approach: ### Strengths - The methods are one commonly used in these types of studies ranging from encapsulating the ODN, followed by wrapping with the lipid bilayer and then adding the targeting agent to the lipid bilayer to target specific receptors and test for the extent of protein expression and toxicity. It seems very ambitious that they will be able to achieve over 95% encapsulation efficiencies that will result in a successful therapeutic outcome. - They have demonstrated some initial success with these approaches in using VEGF antisense and now will include Hypoxia-Inducible Factor 1-alpha in specific aim 1. - They do have extensive experience in the various experimental methods. ## Weaknesses - The proposal is confusing to read as they mix the results from previous studies with the currently proposed studies. - It would strengthen the proposal if they would have identified specifically the conjugatable lipid anchors that will be formulated with the liposomes so it could be used to conjugate with the model targeting agent. This is the one of the weakest part of the proposal. While they do provide a basis of the conjugation chemistries available, it does not necessarily ensure that there will be success in this process. ### 5. Environment: ## Strengths The resources and equipment available at Molecular Express and the University of California at Los Angeles laboratories of Drs. Gelbart and Knobler, as well as the Nanosystems Institute, is well suited to complete the proposed scope of work. #### Weaknesses None noted. # Phase II (Type 2 R42 and Type 2 R44 applications): Not Applicable # Fast Track (Type 1 R42 and Type 1 R44 applications): Not Applicable ### **Protections for Human Subjects:** Not Applicable (No Human Subjects) #### **Vertebrate Animals:** Not Applicable (No Vertebrate Animals) #### **Biohazards:** Acceptable ## **Budget and Period of Support:** Recommend as Requested #### **CRITIQUE 3:** Significance: 3 Investigator(s): 2 Innovation: 2 Approach: 3 Environment: 2 Overall Impact: This proposal is based on the development of lipid encapsulated (what appears to be a liposome-like delivery device) single strand DNA (ssDNA) conjugated with the capsid protein of cowpea chlorotic mottle virus that will target Hypoxia Inducible Factor 1α. The PI paid attention to use minimal cationic lipid in enveloping the ssDNA conjugate. Cytotoxicity and VEGF expression protocols are appropriate but targeting cannot be established adequately using a mixture of cancerous and non-cancerous cells. Although there is no targeting approach in this proposal, this technology will help a lot in experimental approach in delivery of ssDNA and siRNA. Given that hypoxia inducible factor is a regulator for angiogenesis, it is appropriate to assay the expression of VEGF, however, a direct assay of hypoxia inducible factor using Western and/or RT-PCR would be desirable. In addition, a few disadvantages of ssDNA are known for non-specific hybridization and inefficient endocytosis in the organelles. Are there any suggestions to minimize these disadvantages? Enthusiasm is high for this proposal. THE FOLLOWING SECTIONS WERE PREPARED BY THE SCIENTIFIC REVIEW OFFICER TO SUMMARIZE THE OUTCOME OF DISCUSSIONS OF THE REVIEW COMMITTEE, OR REVIEWER'S WRITTEN CRITIQUES, ON THE FOLLOWING ISSUES: ### COMMITTEE BUDGET RECOMMENDATIONS: The budget was recommended as requested. • Additional budget justification for the graduate student was requested. NIH has modified its policy regarding the receipt of resubmissions (amended applications). See Guide Notice NOT-OD-14-074 at http://grants.nih.gov/grants/guide/notice-files/NOT-OD-14-074.html. The impact/priority score is calculated after discussion of an application by averaging the overall scores (1-9) given by all voting reviewers on the committee and multiplying by 10. The criterion scores are submitted prior to the meeting by the individual reviewers assigned to an application, and are not discussed specifically at the review meeting or calculated into the overall impact score. Some applications also receive a percentile ranking. For details on the review process, see http://grants.nih.gov/grants/peer_review_process.htm#scoring. #### **MEETING ROSTER** ## Center for Scientific Review Special Emphasis Panel CENTER FOR SCIENTIFIC REVIEW Small Business: Basic and Integrative Bioengineering ZRG1 IMST-S (12) B February 26, 2015 #### **CHAIRPERSON** WILLITS, REBECCA K, PHD ASSOCIATE PROFESSOR DEPARTMENT OF BIOMEDICAL ENGINEERING UNIVERSITY OF AKRON AKRON, OH 44325 #### **MEMBERS** BECHTEL, KATE L, PHD PRINCIPAL SCIENTIST TRIPLE RING TECHNOLOGIES NEWARK, CA 94560 BRAUNLIN, WILLIAM H, PHD CHIEF SCIENTIFIC OFFICER IPSHAKTI, LLC PRINCETON, NJ 08540 BRAZEAU, GAYLE A, PHD PROFESSOR AND DEAN COLLEGE OF PHARMACY UNIVERSITY OF NEW ENGLAND PORTLAND, ME 04103 BRUE, VESTA CEO MEDSIGNALS/VITALSIGNALS INC. LEXINGTON, KY 40507 CHITTUR, SRIDAR V, PHD ASSOCIATE PROFESSOR MICROARRAY CORE FACILITY CENTER FOR FUNCTIONAL GENOMICS UNIVERSITY AT ALBANY RENSSELAER, NY 12144 DAS, SUDIP K, PHD ASSOCIATE PROFESSOR AND CHAIR DEPARTMENT OF PHARMACEUTICAL SCIENCES BUTLER UNIVERSITY INDIANAPOLIS, IN 46208 DATWANI, SAMMY S, PHD DIRECTOR AND PRINCIPAL INVESTIGATOR DEPARTMENT OF ADVANCE DEVELOPMENT LABCYTE, INC. SUNNYVALE, CA 94089 ERVIN, JOHN, PHD PRESIDENT SILICON KINETICS SAN DIEGO, CA 92121 FOX, PETER , PHD GROUP COORDINATOR AND PROFESSOR SCHOOL OF SUSTAINABLE ENGINEERING AND THE BUILT ENVIRONMENT ARIZONA STATE UNIVERSITY TEMPE, AZ 85287 GARCIA, ANTONIO AGUSTIN, PHD PROFESSOR SCHOOL OF BIOLOGICAL AND HEALTH SYSTEMS ENGINEERING IRA A. FULTON SCHOOL OF ENGINEERING ARIZONA STATE UNIVERSITY TEMPE. AZ 85287 IRUDAYARAJ, JOSEPH MK, PHD PROFESSOR DEPARTMENT OF AGRICULTURAL AND BIOLOGICAL ENGINEERING PURDUE UNIVERSITY WEST LAFAYETTE, IN 47907 JIANG, WENPING, PHD VICE PRESIDENT AND DIRECTOR OF MANUFACTURING NANOMECH, INC. FAYETTEVILLE, AR 72701 JOHNSON, PETER C, MD VICE PRESIDENT RESEARCH AND DEVELOPMENT AND MEDICAL AFFAIRS VANCIVE MEDICAL TECHNOLOGIES RALEIGH, NC 27614 KONG, HYUNJOON, PHD ASSOCIATE PROFESSOR CHEMICAL AND BIOMOLECULAR ENGINEERING UNIVERSITY OF ILLINOIS URBANA, IL 61801 LI, ALBERT P, PHD PRESIDENT AND CEO IN VITRO ADMET LABORATORIES LLC COLUMBIA, MD 21045 PAPAUTSKY, IAN , PHD PROFESSOR DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING UNIVERSITY OF CINCINNATI CINCINNATI, OH 45221 RETTERER, SCOTT THOMAS, PHD RESEARCH SCIENTIST BIOSCIENCES DIVISION CENTER FOR NANOPHASE MATERIALS SCIENCES OAK RIDGE NATIONAL LABORATORY OAK RIDGE, TN 37831 SKUSE, GARY ROBERT, PHD PROFESSOR DEPARTMENT OF BIOLOGICAL SCIENCES ROCHESTER INSTITUTE OF TECHNOLOGY ROCHESTER, NY 14623 SUBRAMANIAN, ANU , PHD PROFESSOR DEPARTMENT OF CHEMICAL AND BIOMOLECULAR ENGINEERING UNIVERSITY OF NEBRASKA, LINCOLN LINCOLN, NE 68588 WATSON, JENNIFER MARIE ASSOCIATE, TECHNOLOGY COMMERICIALIZATION, TLA WHEELHOUSE TECH LAUNCH ARIZONA UNIVERSITY SERVICES ANNEX UNIVERSITY OF ARIZONA TUCSON, AZ 85721 ## MAIL REVIEWER(S) KALE, AMIT A, PHD SCIENTIST II DEPARTMENT OF FORMULATION ALNARA PHARMACEUTICALS CAMBRIDGE, MA 02139 ### **SCIENTIFIC REVIEW OFFICER** SAMMAK, PAUL, PHD SCIENTIFIC REVIEW OFFICER CENTER FOR SCIENTIFIC REVIEW NATIONAL INSTITUTES OF HEALTH BETHESDA, MD 20892 ### **EXTRAMURAL SUPPORT ASSISTANT** AKOMAH, STEPHEN LEAD EXTRAMURAL SUPPORT ASSISTANT CENTER FOR SCIENTIFIC REVIEW NATIONAL INSTITUTES OF HEALTH BETHESDA, MD 20892 ## **OTHER REVIEW STAFF** TAO, FENG, PHD SCIENTIFIC REVIEW OFFICER CENTER FOR SCIENTIFIC REVIEW NATIONAL INSTITUTES OF HEALTH BETHESDA, MD 20892 Consultants are required to absent themselves from the room during the review of any application if their presence would constitute or appear to constitute a conflict of interest.